
Abstract 

In this paper, we address the latency issue in RT-

XEN virtual machines that are available in Xen 

4.5. Despite the advantages of applying 

virtualization to systems, the default credit 

scheduler is difficult to use with automotive 

devices and other systems that are developed to 

assist, complement, and eventually substitute the 

driver in the complex process of controlling a 

vehicle due to unpredictable domain scheduling 

and I/O latency.  

This paper analyzes the latency of OS scheduling 

for symmetric and asymmetric multi-processing 

support cases – as well as incoming packet 

handling in Xen – using default credit and real-

time schedulers. It also demonstrates how the real-

time scheduler affects latency. With RT-Xen 

support, most of the incoming packets are 

predictably handled within 1 millisecond with a 

small overhead at the destined guest OS, which is 

a feasible time bound for most soft real-time 

applications. 

 

Introduction 

The speed of today’s high-performance 

processors, combined with the real-time support 

for an embedded OS, appears to have re-opened 

the question of whether embedded systems 

support RTOS within a virtualization framework.  

To accommodate a real-time guest OS to Xen, the 

I/O latency issue must be addressed. Predictable 

I/O latency is particularly critical because most 

real-time guest OSes demand timely handling for 

random I/O events. For example, a real-time guest 

OS should handle network interrupts within a 

predictable latency bound, regardless of the CPU 

workload or other general purpose guest OSes. 

However, the I/O latency over the Xen default 

scheduler is very unpredictable because the I/O 

latency is affected by virtual CPU (VCPU) 

scheduling within Xen.  

I/O latency in Xen can be largely presented, 

although a guest OS will schedule an I/O task as 

soon as possible. At first, the credit scheduler (i.e., 

the default inter-VM scheduler for the Xen 

hypervisor) is insufficient for supporting time-

sensitive applications. Specifically, with the split 

driver model of Xen, packet handling can be 

considerably delayed because the split driver 

model requires additional scheduling of the driver 

domain. Secondly, the latency inside a guest OS 

can be negatively affected by paravirtualization. 

We made an evaluation to support the global 

scheduler on a SMP system with a global virtual 

CPU to physical core allocation. The purpose of 

this evaluation was to measure for different 

scheduler configurations and to find optimal 

values on an idle system and under system load.  

 

Testing Parameters 

Hardware Platform 

We performed a real-time investigation on a 

DRA74x evaluation board. The hardware platform 

was equipped with a dual-core ARM Cortex-A15 

processor and ran on a 1Ghz and 1Gbps network 

device. 

 

Native System 

The native system ran the SMP Linux kernel on 

the CPU. Linux has a complete scope of tools 

available on https://rt.wiki.kernel.org to measure 

latencies, as well as system calls that can be used 

for performance evaluations. The most important 

test is a cyclic test that determines system 

latencies, and it can be found on 

https://rt.wiki.kernel.org/index.php/Cyclictest.  

 

We obtained reference values on the Texas 

Instruments Linux kernel 3.8.13 from the 

GLSDK. Below is the output from this test: 

 
#./cyclictest -t8 -p 20 -n -i 10000 

/dev/cpu_dma_latency set to 0us 

policy: fifo: loadavg: 0.38 0.40 0.32 1/78 1736 

T: 0 ( 1726) P: 1 I:10000 C: 144245 Min: 9 Act: 24 Avg: 20 Max: 56 

T: 1 ( 1727) P: 1 I:10500 C: 137377 Min: 8 Act: 26 Avg: 20 Max: 57 

T: 2 ( 1728) P: 1 I:11000 C: 131132 Min: 8 Act: 26 Avg: 20 Max: 

161 

T: 3 ( 1729) P: 1 I:11500 C: 125431 Min: 8 Act: 19 Avg: 20 Max: 57 

T: 4 ( 1730) P: 1 I:12000 C: 120204 Min: 8 Act: 11 Avg: 20 Max: 66 

T: 5 ( 1731) P: 1 I:12500 C: 115396 Min: 9 Act: 12 Avg: 20 Max: 57 

T: 6 ( 1732) P: 1 I:13000 C: 110958 Min: 8 Act: 21 Avg: 20 Max: 56 

T: 7 ( 1733) P: 1 I:13500 C: 106848 Min: 8 Act: 27 Avg: 20 Max: 63 

 



The test showed real-time performance results 

running on the Linux kernel without a 

virtualization environment. The average latency 

was below 50us, and the top latency was within an 

approximately 200us timeframe. These results 

should be considered as a top reference value 

when operating in a virtualized environment with 

a small overhead. 

 

 

Virtualization Environment 

 
The Nautilus™ system ran several operating 

systems in a Xen virtualization environment (i.e., 

hypervisor). The hypervisor is a version of Xen 

for ARM-based devices that presents small 

performance overhead. The Nautilus™ system is 

represented by the three different domains: 

 

1. Domain-0: thin domain with SATA support 

2. Domain-D: driver domain 

3. Android_4.3: guest domain 

 

For reliability, Nautilus™ split drivers of Xen for 

ARM isolate faulty and error-prone device drivers 

from user domains by locating physical drivers to 

the driver domain. Since a user domain is 

completely separated from the driver domain, a 

user domain can reliably perform its task even if 

the driver domain is compromised and fails. 

Each domain ran Linux kernel 3.8.13 and 

consumed two virtual processor resources, 

running a SMP kernel on each virtual core. The 

hypervisor allocated six virtual processor 

interfaces total, scheduling each particular 

processor to one of two physical cores. 

By default, the hypervisor scheduled all virtual 

CPUs on physical cores using a credit scheduler 

so that the virtual CPU timeslot was granted for 

the specific time frames (i.e., budget). Xen 

implemented the run queue of a virtual CPU, and 

the credit scheduler queued a specific virtual 

processor from the physical CPU pool based on a 

round-robin algorithm. 

 

 

RT-XEN Support 
 

The RT-XEN project extends Xen, the most 

widely used open source virtual machine 

manager, to support real-time systems. RT-XEN 

uses the hierarchical scheduling theory to bridge 

the gap between virtualization and real-time 

systems by introducing schedulers in Xen that are 

compatible with schedulers in guest operating 

systems. 

Xen 4.5 provides the RTDS scheduler required for 

time-critical tasks. There are several scheduling 

schemes available, including global scheduling 

(i.e., all cores share one run queue with a global 

spinlock) and partition scheduling (i.e., one run 

queue per core without a spinlock). 

Global Scheduling 

 Schedules virtual CPU based on global 

information 

 Allows virtual CPU migration across cores 

 Flexible use of multiple cores (pros) 

 Migration (global spinlock) overhead and 

L1/L2 cache penalty (cons) 

Partition Scheduling 

 Assigns and binds virtual CPU to physical 

core 

 Schedules virtual CPU on each core 

independently 

 May underutilize physical core 

 No migration overhead (global spinlock) or 

associated cache penalty 

 

Global Scheduling 

Evaluation 
 

A system may specify to run global scheduling by 

passing a “sched = rtds” option via boot 

arguments, which could be achieved either using 

boot loader settings or a thin domain device tree 

running under a Xen 4.5 hypervisor. This way, 

Xen starts to globally schedule all the domains 

with the RTDS scheduler, and share processors’ 

protected with a global spinlock run-queue among 

all virtual CPUs,.  



We made an evaluation to support the global 

scheduler on a SMP system with a global virtual 

CPU to physical core allocation. The purpose of 

this evaluation was to measure for different 

scheduler configurations and to find optimal 

values on an idle system and under system load.  

The time measurements made by the independent 

32Khz clock source (i.e., high resolution timers) 

supported the driver domain. The default 

scheduler configuration supported 4ms budget and 

10ms period for all domains. It looked as follows: 

/ # xl sched-rtds 

Cpupool Pool-0: sched=RTDS 

Name ID Period Budget 
Domain-0 0 10000 4000 

Domain-D 1 10000 4000 

android_4.3 2 10000 4000 

 

We ran the cyclic test on the default configuration 

in the driver domain. The test does not perform 

output to the Xen console, thus it does not take 

into account the inter-domain latency that appears 

due to Xen-Events Intra-VM communication. This 

way, Intra-VM latency does not affect our test 

results. 

# ./cyclictest -t4 -p20 -n -i 10000 -l 10000 -m > tmp && cat tmp | tail 

T: 0 ( 883) P:20 I:10000 C: 10000 Min: 11 Act: 145 Avg: 135 Max: 

621 

T: 1 ( 884) P:20 I:10500 C: 9520 Min: 9 Act: 105 Avg: 135 Max: 
5719 

T: 2 ( 885) P:20 I:11000 C: 9083 Min: 11 Act: 80 Avg: 134 Max: 

5368 
T: 3 ( 886) P:20 I:11500 C: 8684 Min: 13 Act: 196 Avg: 157 Max: 

2253 

 

The test results demonstrated that all of the 

threads were scheduled within an approximately 

4ms budget and a1ms global scheduling overhead. 

The SoC peripheral clock resolution allowed us to 

make measurements with an accuracy of 325 ns. 

As a next step, we configured different budgets 

and periods for the domains. We configured 

Domain-D to schedule with a 400 us period with 

the same budget, simulating a real-time domain 

latency that does not exceed 1 millisecond. The 

domains that are not required to meet real-time 

constraints will have more relaxed values of 

period and budget (e.g. 10 milliseconds for the 

guest domain and 1 millisecond for the thin 

domain). 

# xl sched-rtds -d Domain-D -p 400 -b 400 
# xl sched-rtds -d Domain-0 -p 1000 -b 400 

# xl sched-rtds -d android_4.3 -p 10000 -b 5000 

 

We measured the system latency on Domain-D 

when the other domains stayed idle after the 

reconfiguration of the budget and period. 

Dual-Core SMP Test 

# ./cyclictest -t4 -p20 -n -i 10000 -l 10000 -m > tmp && cat tmp | tail 

T: 0 ( 883) P:20 I:10000 C: 10000 Min: 11 Act: 170 Avg: 137 Max: 
523 

T: 1 ( 884) P:20 I:10500 C: 9522 Min: 11 Act: 16 Avg: 154 Max: 

307 
T: 2 ( 885) P:20 I:11000 C: 9087 Min: 11 Act: 208 Avg: 136 Max: 

315 

T: 3 ( 886) P:20 I:11500 C: 8689 Min: 10 Act: 169 Avg: 148 Max: 
704 

 

The dual-core SMP test showed that the average 

maximal latency was reduced to 400 

microseconds with a small overhead. Applying 

affinity to the test allowed per virtual core latency 

breakthrough. The virtual Core 1 had a bit lower 

overhead since it wasn’t running the most 

interrupts. (Interrupts virtualization affects the 

average maximal system latency with a bit larger 

maximal overhead observed on Core 0.) 

The next test ran the Whetstone benchmark on the 

non-real-time thin domain to measure system 

latency on the real-time driver domain. The cyclic 

test running on the driver domain showed similar 

results to the idle system when Domain-0 was 

loaded with the Whetstone benchmark: 

# ./cyclictest -t4 -p20 -n -i 10000 -l 10000 -m > tmp && cat tmp | tail 

T: 0 ( 891) P:20 I:10000 C: 10000 Min: 12 Act: 195 Avg: 157 Max: 

314 
T: 1 ( 892) P:20 I:10500 C: 9521 Min: 10 Act: 133 Avg: 146 Max: 

335 

T: 2 ( 893) P:20 I:11000 C: 9087 Min: 10 Act: 145 Avg: 108 Max: 
318 

T: 3 ( 894) P:20 I:11500 C: 8690 Min: 14 Act: 107 Avg: 141 Max: 

367 
 

This simulation proved that the RTDS scheduler 

continued to transfer the control to the driver 

domain within the predefined period and budget 

of 400 microseconds, independent of system load. 

This way, it might be possible to configure 

different domains to run with a specified budget 

and period. 

Partitioned Scheduling 

Evaluation 
 
Partition scheduling subscribes to the idea of 

reallocating all the time-critical code to the 

separate physical core. This way, the scheduler 

avoids rescheduling non-time-critical tasks and 

locking all the cores globally. The following 

experiments proved that the system is capable of 

achieving real-time performance when separating 

time-critical tasks (i.e., OSes) to the separate 



physical processor by assigning and binding 

virtual CPUs to the physical core and scheduling 

virtual CPUs on each core independently. 

We bound all non-real-time domains to Core 0 

and all real-time domains to Core 1, with a 

specified budget of 1ms. 

#xl vcpu-pin Domain-0 all 0 

#xl vcpu-pin android_4.3 all 0 
#xl vcpu-pin Domain-D all 1 

#xl sched-rtds -d Domain-D -p 1000 -b 1000 

 
The test running in Domain-D showed an average 

latency below 100 microseconds and a top latency 

below 1 millisecond, fitting real-time 

requirements. 

 
# ./cyclictest -t4 -p 20 -n -i 10000 -l 1000 -m 

/dev/cpu_dma_latency set to 0us 

policy: fifo: loadavg: 0.00 0.04 0.05 1/72 892 
T: 0 ( 889) P:20 I:10000 C: 459 Min: 17 Act: 56 Avg: 72 Max: 950 

T: 1 ( 890) P:20 I:10500 C: 436 Min: 34 Act: 116 Avg: 88 Max: 973 

T: 2 ( 891) P:20 I:11000 C: 414 Min: 38 Act: 50 Avg: 95 Max: 880 
T: 3 ( 892) P:20 I:11500 C: 395 Min: 19 Act: 54 Avg: 73 Max: 444 

 

 
 

Mixed Scheduling 

Evaluation 
 
This is another test scenario to support different 

schedulers in different physical CPU pools. As the 

hypervisor schedules all virtual CPUs on a 

physical core using the default credit scheduler, 

the real-time domain has to migrate to the 

physical CPU. This way, the system binds 

partitioned credit and real-time schedulers to the 

dedicated PCPUs. 

Since the guest domain is the major source of 

latency, we will first look into the latency with the 

guest domain. Then we will analyze latency with 

Dom0 for further investigation. 

To bind the real-time domain, we performed a test 

with the following command sequence: 

/ # xl cpupool-cpu-remove Pool-0 1 

/ # xl cpupool-create name=\"realtime\" sched=\"rtds\" 

/ # xl cpupool-cpu-add realtime 1 
/ # xl cpupool-migrate Domain-D realtime 

/ # xl sched-rtds -d Domain-D -p 1000 -b 1000 

 

The test running in the driver domain showed an 

average latency below 100 microseconds and a 

top latency below 1 millisecond, fitting real-time 

requirements. 

 
# ./cyclictest -t4 -p20 -n -i 10000 -l 1000 -m > tmp 

# cat tmp 

/dev/cpu_dma_latency set to 0us 

policy: fifo: loadavg: 1.28 0.50 0.18 1/70 894 

T: 0 ( 891) P:20 I:10000 C: 1000 Min: 11 Act: 32 Avg: 66 Max: 127 
T: 1 ( 892) P:20 I:10500 C: 951 Min: 11 Act: 91 Avg: 66 Max: 132 

T: 2 ( 893) P:20 I:11000 C: 906 Min: 11 Act: 34 Avg: 65 Max: 132 

T: 3 ( 894) P:20 I:11500 C: 865 Min: 12 Act 
 

 

CyclicTest Evaluation  
 

We investigated the global and partitioned real-

time scheduling. We discovered that partitioned 

and mixed scheduling schemes were suitable for 

time-critical tasks (e.g. real-time support), while 

global real-time scheduling required domain 

parameter configuration and tuning. Global real-

time scheduling appears to provide a larger 

overhead due to virtual CPU migration and global 

lock based run-queue management and cache 

penalties. 

A pro of partitioned real-time scheduling is a real-

time domain performance on the dedicated 

physical processor core, while the con is a 

performance drop of the domains scheduled on 

another physical core. Alternatively, global 

scheduling provides larger overhead with no 

expected performance drop for non-real-time 

domains. 

 

Packet Latency 
 

This section presents the packet latency in RT-

XEN by measuring the packet latency with ping 

tests. The measurement environment included 

three guests OSes run over RT-XEN on the 

Nautilus ™ system. 

The driver domain acted as a server for 

communication with the host PC over Ethernet 

and provided a virtual Ethernet interface for 

communication with the guest domain. The guest 

domain was a ping recipient domain that had soft 

real-time requirements in handling network 

packets. The thin domain had 100% CPU 

workloads to ensure work-conserving execution. 

An external server sent ICMP request packets to 

the guest domain over NAT. RT-XEN used the 

RTDS scheduler, and a timer tick was set to 10ms. 

We obtained the distribution graphs from 100 

ping samples.  

Since the guest domain is the major source of 

latency, we will first look into the latency within 



the guest domain. Then we will analyze latency 

within the driver domain for further investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Credit Scheduler Packet Latency 
 

First, we measured packet latency within the guest 

domain and looked at the effect of the credit 

scheduler on the virtual CPU. To present packet 

latency within the guest domain, we measured the 

latency in the interval from I/O task completion at 

netback in the guest domain to I/O task 

completion at ICMP reply in the driver domain.  

To test non-boosted VCPU, we gave different 

CPU-intensive workloads (i.e., 0%, 30%, 60%, 

and 75%) to the guest domain. In addition, we 

assumed that I/O completion latency within the 

guest domain was small enough to ignore because 

it was much smaller than the other latency. 

Therefore we intentionally omitted it from all our 

results. This small latency was partly due to ICMP 

handling in Linux kernel, in which ICMP packets 

were handled within a softirq context. As such, 

little overhead was involved. 

Load Idle 30,00% 60,00% 75,00% 

  0,747 1,27 2,61 2,61 

  0,728 1,65 8,93 8,93 

  0,569 1,69 1,15 1,15 

  0,619 0,609 1,15 1,15 

  0,584 1,76 8,93 8,93 

  0,817 1,71 8,93 8,93 

  0,606 0,672 8,93 8,93 

  0,585 1,59 8,93 8,93 

  0,732 1,59 8,93 8,93 

  0,673 1,59 8,93 8,93 

  1,03 0,642 8,93 8,93 

  0,556 1,63 8,93 8,93 

  0,641 1,62 8,92 8,92 

  0,645 1,62 8,93 8,93 

  0,673 0,633 8,93 8,93 

  0,989 1,66 8,93 8,93 

  0,676 1,62 1,18 10,18 

  0,634 1,62 79,3 79,3 

  0,552 0,548 84,7 84,7 

  0,692 1,68 1,18 1,18 

  0,525 1,66 8,96 8,96 

  0,706 0,531 8,92 8,92 

          

          

Average 0,680864 1,345227 13,87409 14,28318 

Max 1,03 1,76 84,7 84,7 

Stdev 0,128651 0,472641 22,29284 22,13079 

 

As shown in the table, when all domains had a 0% 

workload, 99% of the packets were handled 

within 1 millisecond. On the other hand, when the 

thin domain had a 100% CPU load (30% load), 

only 27% of the packets were handled within 1 

millisecond.  

The below figure shows a clear trend in which 

fewer packets were handled within 1 millisecond 

time-bound as the CPU load increased from 20% 

to 100%. This is mainly due to a non-boosted 

virtual CPU, which is affected by the CPU 

workload of itself. When we added a driver 

domain 100% virtual CPU load (60% total load), 

all of the packets missed the 1 millisecond 

deadline, with peak latency values being more 

than 100 milliseconds.  

The figure also shows a clear trend in which fewer 

packets were handled within 1 millisecond time-

bound as the CPU load increased from 0% to 

75%. This is mainly due to a non-boosted virtual 

CPU, which is affected by the CPU workload of 

itself under the credit scheduler’s control. 
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Also note that, as shown in the above figure, most 

packets were handled within 10ms (i.e., the 

scheduling period of the credit scheduler). When a 

packet handling was delayed by a non-boosted 

virtual CPU, it was dispatched at the next 

scheduling period. Consequently, 70ms + latency 

was presented. 

 

Partitioned RT Packet Latency 
 

Next, we measured packet latency within the 

guest domain and looked at the effect of the 

RTDS scheduler of the virtual CPU. To present 

packet latency within the guest domain, we 

measured the latency in the interval from the host 

to the driver domain to I/O task completion in the 

guest domain at ICMP reply. We gave the same 

different CPU-intensive workloads (i.e., 0%, 30%, 

60%, and 75%) to the thin and driver domains. 

Thus, the guest domain was intentionally omitted 

from all our results.  

We configured the driver domain as a high-

priority domain with a period and budget of 0.2ms 

and running net-backend. Since the guest domain 

could be preempted by the driver domain, we set 

it to a harmonic period and budget of 400 

microseconds, running net-frontend. We kept the 

thin domain completely preempted by the others 

and set up 1 millisecond as its scheduling period. 

The below table represents the round-trip test 

results: 

 

Load Idle 25,00% 50,00% 75,00% 

  0,903 2,62 2,62 2,67 

  0,595 1,18 1,18 1,16 

  0,554 1,18 1,18 1,25 

  0,553 1,15 1,15 1,21 

  0,586 1,15 1,15 1,24 

  0,576 1,19 1,19 1,23 

  0,58 1,16 1,16 1,13 

  0,55 1,15 1,15 1,4 

  0,55 1,17 1,17 1,37 

  0,611 1,15 1,15 1,15 

  0,475 1,18 1,18 1,16 

  0,584 1,18 1,18 1,15 

  0,593 1,15 1,15 1,46 

  0,555 1,15 1,15 1,44 

  0,635 1,15 1,15 1,43 

  0,546 1,16 1,16 1,15 

  0,459 1,16 1,16 1,15 

  0,586 1,15 1,15 1,12 

  0,529 1,15 1,15 1,49 

  0,578 1,15 1,15 1,12 

  0,5 1,15 1,15 1,15 

  0,554 1,15 1,15 1,51 

          

          

Average 0,575091 1,226364 1,2264 1,324545 

Max 0,903 2,62 2,62 2,67 

Stdev 0,084125 0,311564 0,3116 0,329888 

 

In the above table, when all domains had a 0% 

workload, 100% of the packets were handled 

within 1 millisecond. When we loaded a less 

responsive thin domain 100% CPU load (30% 

total load), only 99% of the packets were handled 

within 1 millisecond with small scheduling 

overhead (i.e., 150 microseconds). The picture 

changed a bit when we added a driver domain 

100% virtual CPU load (50% - 75% total load). 

The packet latency deadline adjusted to the small 

scheduling overhead, although the packets were 

missing the 1 millisecond deadline. The total 

average and peak latencies increased a bit to 1.32 

and 2.67 milliseconds respectively. 

The below figure shows a clear trend in which 

most packets were handled within 1 millisecond 

and scheduling overhead (1.5 approximately) was 

time-bound as the CPU load increased from 0% to 

75%. This demonstrates a very smooth packet 

latency transition within such a configuration and 

could be applicable to soft-real-time needs. 
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Global RT Packet Latency 
 

Eventually we would like to estimate the packet 

latency for the symmetric multi-processing 

support virtualization support. We are using the 

same measurement procedure to obtain the latency 

in the interval from the host to the driver domain 

to I/O task completion in the guest domain at 

ICMP reply. We gave the same different CPU-

intensive workloads (i.e., 0%, 30%, 60%, and 

75%) to the thin and driver domains. 

The schedule configuration remained the same as 

that for the partitioned scheduled: 200 

microseconds for netback at the driver domain, 

400 microseconds for the front-end in the guest 

domain, and 1 millisecond for the thin domain. 

The below table represents the round-trip test 

results: 

 

Load Idle 25,00% 50,00% 75,00% 

  0,631 0,764 0,764 0,771 

  0,819 0,716 0,716 0,534 

  0,549 0,663 0,663 0,612 

  0,551 0,729 0,729 1,2 

  0,515 0,492 0,492 0,855 

  0,539 0,624 0,624 1,14 

  0,581 0,652 0,652 2,57 

  0,556 0,517 0,517 1,01 

  0,589 0,659 0,659 1,33 

  0,626 0,584 0,584 0,681 

  0,612 0,501 0,501 1,13 

  0,578 0,52 0,52 0,713 

  0,626 0,61 0,61 1,31 

  0,605 0,427 0,427 0,883 

  0,524 0,644 0,644 1,08 

  0,523 0,594 0,594 0,687 

  0,677 0,757 0,757 0,714 

  0,707 0,629 0,629 0,588 

  0,508 0,812 0,812 1 

  0,601 0,439 0,439 0,585 

  0,535 0,588 0,588 1,05 

  0,613 0,538 0,538 0,897 

          

          

Average 0,5938636 0,611773 0,6117727 0,97 

Max 0,819 0,812 0,812 2,57 

Stdev 0,0725083 0,105114 0,105114 0,4313284 

 

100% of packets were handled within 1 

millisecond on the idle system. The thin domain 

load of 100% (30% total load) barely increased 

peak and average latencies. Again, the picture 

changes as we added the driver domain workload 

(75% total load). The packet latency deadline 

adjusted to small scheduling overhead, although 

the packets were missing the 1 millisecond 

deadlines. The total average and peak latencies 

increased similarly to the partitioned scheduling 

case. 

The below figure shows a clear trend in which 

most packets were handled within 1 millisecond 

for CPU load increases of 0% to 30% (i.e., thin 

domain workload). The peak latency adjusted just 

when we added the driver domain (net-backend) 

to the game, while the average latency remained 

below the 1 millisecond bound. 
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RT-XEN vs Credit I/O 

Latency 
 

We performed PV-NET latency measurements for 

three different scheduling configurations: 

 Credit scheduler  

 RT-Xen global scheduler  

 RT-Xen partitioned scheduler 

The results are available for different schedulers, 

and we performed every test for different 

workloads (i.e., idle, 25% load, 50% load, 75% 

load). The workload was generated by running 

several whetstone instances in the thin and driver 

domains. 

The credit scheduler showed a very large maximal 

latency that is above 80 milliseconds under heavy 

load conditions, with 10 milliseconds being the 

average.  

The partitioned RT-XEN scheduler showed 

optimal latency values. The worse-case packet 

latency deadline was 2.67 ms under heavy load 

conditions. 

The global scheduler test results were pretty close 

to those of the partitioned scheduler, although the 

average and peak latency increased more slowly 

than the partitioned as workload progressed. 

 

Conclusion 
 
In this paper, we discussed scheduling the packet 

latency in RT-Xen. Due to the limitations of the 

current default credit scheduler and interrupt 

paravirtualization of guest OSes, a guest domain 

cannot handle network packets within a 

predictable time bound with Xen. To provide a 

predictable latency bound, this paper proposes 

using RT-Xen scheduler. 

Our conclusion is that every domain configuration 

has an impact on the Intra-VM latency during the 

tuning of the global scheduler settings. In fact, the 

domain with a smaller period and budget is 

scheduled more often (thus being able to operate 

within time-critical constraints), while non-real-

time domains should be configured with a larger 

period and the budget. This approach allows Xen 

to preempt non-real-time domains by real-time, 

thereby keeping the latency low even for an Intra-

VM switch. 

 


