
Abstract

In this paper, we address the latency issue in RT-

XEN virtual machines that are available in Xen

4.5. Despite the advantages of applying

virtualization to systems, the default credit

scheduler is difficult to use with automotive

devices and other systems that are developed to

assist, complement, and eventually substitute the

driver in the complex process of controlling a

vehicle due to unpredictable domain scheduling

and I/O latency.

This paper analyzes the latency of OS scheduling

for symmetric and asymmetric multi-processing

support cases – as well as incoming packet

handling in Xen – using default credit and real-

time schedulers. It also demonstrates how the real-

time scheduler affects latency. With RT-Xen

support, most of the incoming packets are

predictably handled within 1 millisecond with a

small overhead at the destined guest OS, which is

a feasible time bound for most soft real-time

applications.

Introduction

The speed of today’s high-performance

processors, combined with the real-time support

for an embedded OS, appears to have re-opened

the question of whether embedded systems

support RTOS within a virtualization framework.

To accommodate a real-time guest OS to Xen, the

I/O latency issue must be addressed. Predictable

I/O latency is particularly critical because most

real-time guest OSes demand timely handling for

random I/O events. For example, a real-time guest

OS should handle network interrupts within a

predictable latency bound, regardless of the CPU

workload or other general purpose guest OSes.

However, the I/O latency over the Xen default

scheduler is very unpredictable because the I/O

latency is affected by virtual CPU (VCPU)

scheduling within Xen.

I/O latency in Xen can be largely presented,

although a guest OS will schedule an I/O task as

soon as possible. At first, the credit scheduler (i.e.,

the default inter-VM scheduler for the Xen

hypervisor) is insufficient for supporting time-

sensitive applications. Specifically, with the split

driver model of Xen, packet handling can be

considerably delayed because the split driver

model requires additional scheduling of the driver

domain. Secondly, the latency inside a guest OS

can be negatively affected by paravirtualization.

We made an evaluation to support the global

scheduler on a SMP system with a global virtual

CPU to physical core allocation. The purpose of

this evaluation was to measure for different

scheduler configurations and to find optimal

values on an idle system and under system load.

Testing Parameters

Hardware Platform

We performed a real-time investigation on a

DRA74x evaluation board. The hardware platform

was equipped with a dual-core ARM Cortex-A15

processor and ran on a 1Ghz and 1Gbps network

device.

Native System

The native system ran the SMP Linux kernel on

the CPU. Linux has a complete scope of tools

available on https://rt.wiki.kernel.org to measure

latencies, as well as system calls that can be used

for performance evaluations. The most important

test is a cyclic test that determines system

latencies, and it can be found on

https://rt.wiki.kernel.org/index.php/Cyclictest.

We obtained reference values on the Texas

Instruments Linux kernel 3.8.13 from the

GLSDK. Below is the output from this test:

#./cyclictest -t8 -p 20 -n -i 10000

/dev/cpu_dma_latency set to 0us

policy: fifo: loadavg: 0.38 0.40 0.32 1/78 1736

T: 0 (1726) P: 1 I:10000 C: 144245 Min: 9 Act: 24 Avg: 20 Max: 56

T: 1 (1727) P: 1 I:10500 C: 137377 Min: 8 Act: 26 Avg: 20 Max: 57

T: 2 (1728) P: 1 I:11000 C: 131132 Min: 8 Act: 26 Avg: 20 Max:

161

T: 3 (1729) P: 1 I:11500 C: 125431 Min: 8 Act: 19 Avg: 20 Max: 57

T: 4 (1730) P: 1 I:12000 C: 120204 Min: 8 Act: 11 Avg: 20 Max: 66

T: 5 (1731) P: 1 I:12500 C: 115396 Min: 9 Act: 12 Avg: 20 Max: 57

T: 6 (1732) P: 1 I:13000 C: 110958 Min: 8 Act: 21 Avg: 20 Max: 56

T: 7 (1733) P: 1 I:13500 C: 106848 Min: 8 Act: 27 Avg: 20 Max: 63

The test showed real-time performance results

running on the Linux kernel without a

virtualization environment. The average latency

was below 50us, and the top latency was within an

approximately 200us timeframe. These results

should be considered as a top reference value

when operating in a virtualized environment with

a small overhead.

Virtualization Environment

The Nautilus™ system ran several operating

systems in a Xen virtualization environment (i.e.,

hypervisor). The hypervisor is a version of Xen

for ARM-based devices that presents small

performance overhead. The Nautilus™ system is

represented by the three different domains:

1. Domain-0: thin domain with SATA support

2. Domain-D: driver domain

3. Android_4.3: guest domain

For reliability, Nautilus™ split drivers of Xen for

ARM isolate faulty and error-prone device drivers

from user domains by locating physical drivers to

the driver domain. Since a user domain is

completely separated from the driver domain, a

user domain can reliably perform its task even if

the driver domain is compromised and fails.

Each domain ran Linux kernel 3.8.13 and

consumed two virtual processor resources,

running a SMP kernel on each virtual core. The

hypervisor allocated six virtual processor

interfaces total, scheduling each particular

processor to one of two physical cores.

By default, the hypervisor scheduled all virtual

CPUs on physical cores using a credit scheduler

so that the virtual CPU timeslot was granted for

the specific time frames (i.e., budget). Xen

implemented the run queue of a virtual CPU, and

the credit scheduler queued a specific virtual

processor from the physical CPU pool based on a

round-robin algorithm.

RT-XEN Support

The RT-XEN project extends Xen, the most

widely used open source virtual machine

manager, to support real-time systems. RT-XEN

uses the hierarchical scheduling theory to bridge

the gap between virtualization and real-time

systems by introducing schedulers in Xen that are

compatible with schedulers in guest operating

systems.

Xen 4.5 provides the RTDS scheduler required for

time-critical tasks. There are several scheduling

schemes available, including global scheduling

(i.e., all cores share one run queue with a global

spinlock) and partition scheduling (i.e., one run

queue per core without a spinlock).

Global Scheduling

 Schedules virtual CPU based on global

information

 Allows virtual CPU migration across cores

 Flexible use of multiple cores (pros)

 Migration (global spinlock) overhead and

L1/L2 cache penalty (cons)

Partition Scheduling

 Assigns and binds virtual CPU to physical

core

 Schedules virtual CPU on each core

independently

 May underutilize physical core

 No migration overhead (global spinlock) or

associated cache penalty

Global Scheduling

Evaluation

A system may specify to run global scheduling by

passing a “sched = rtds” option via boot

arguments, which could be achieved either using

boot loader settings or a thin domain device tree

running under a Xen 4.5 hypervisor. This way,

Xen starts to globally schedule all the domains

with the RTDS scheduler, and share processors’

protected with a global spinlock run-queue among

all virtual CPUs,.

We made an evaluation to support the global

scheduler on a SMP system with a global virtual

CPU to physical core allocation. The purpose of

this evaluation was to measure for different

scheduler configurations and to find optimal

values on an idle system and under system load.

The time measurements made by the independent

32Khz clock source (i.e., high resolution timers)

supported the driver domain. The default

scheduler configuration supported 4ms budget and

10ms period for all domains. It looked as follows:

/ # xl sched-rtds

Cpupool Pool-0: sched=RTDS

Name ID Period Budget
Domain-0 0 10000 4000

Domain-D 1 10000 4000

android_4.3 2 10000 4000

We ran the cyclic test on the default configuration

in the driver domain. The test does not perform

output to the Xen console, thus it does not take

into account the inter-domain latency that appears

due to Xen-Events Intra-VM communication. This

way, Intra-VM latency does not affect our test

results.

./cyclictest -t4 -p20 -n -i 10000 -l 10000 -m > tmp && cat tmp | tail

T: 0 (883) P:20 I:10000 C: 10000 Min: 11 Act: 145 Avg: 135 Max:

621

T: 1 (884) P:20 I:10500 C: 9520 Min: 9 Act: 105 Avg: 135 Max:
5719

T: 2 (885) P:20 I:11000 C: 9083 Min: 11 Act: 80 Avg: 134 Max:

5368
T: 3 (886) P:20 I:11500 C: 8684 Min: 13 Act: 196 Avg: 157 Max:

2253

The test results demonstrated that all of the

threads were scheduled within an approximately

4ms budget and a1ms global scheduling overhead.

The SoC peripheral clock resolution allowed us to

make measurements with an accuracy of 325 ns.

As a next step, we configured different budgets

and periods for the domains. We configured

Domain-D to schedule with a 400 us period with

the same budget, simulating a real-time domain

latency that does not exceed 1 millisecond. The

domains that are not required to meet real-time

constraints will have more relaxed values of

period and budget (e.g. 10 milliseconds for the

guest domain and 1 millisecond for the thin

domain).

xl sched-rtds -d Domain-D -p 400 -b 400
xl sched-rtds -d Domain-0 -p 1000 -b 400

xl sched-rtds -d android_4.3 -p 10000 -b 5000

We measured the system latency on Domain-D

when the other domains stayed idle after the

reconfiguration of the budget and period.

Dual-Core SMP Test

./cyclictest -t4 -p20 -n -i 10000 -l 10000 -m > tmp && cat tmp | tail

T: 0 (883) P:20 I:10000 C: 10000 Min: 11 Act: 170 Avg: 137 Max:
523

T: 1 (884) P:20 I:10500 C: 9522 Min: 11 Act: 16 Avg: 154 Max:

307
T: 2 (885) P:20 I:11000 C: 9087 Min: 11 Act: 208 Avg: 136 Max:

315

T: 3 (886) P:20 I:11500 C: 8689 Min: 10 Act: 169 Avg: 148 Max:
704

The dual-core SMP test showed that the average

maximal latency was reduced to 400

microseconds with a small overhead. Applying

affinity to the test allowed per virtual core latency

breakthrough. The virtual Core 1 had a bit lower

overhead since it wasn’t running the most

interrupts. (Interrupts virtualization affects the

average maximal system latency with a bit larger

maximal overhead observed on Core 0.)

The next test ran the Whetstone benchmark on the

non-real-time thin domain to measure system

latency on the real-time driver domain. The cyclic

test running on the driver domain showed similar

results to the idle system when Domain-0 was

loaded with the Whetstone benchmark:

./cyclictest -t4 -p20 -n -i 10000 -l 10000 -m > tmp && cat tmp | tail

T: 0 (891) P:20 I:10000 C: 10000 Min: 12 Act: 195 Avg: 157 Max:

314
T: 1 (892) P:20 I:10500 C: 9521 Min: 10 Act: 133 Avg: 146 Max:

335

T: 2 (893) P:20 I:11000 C: 9087 Min: 10 Act: 145 Avg: 108 Max:
318

T: 3 (894) P:20 I:11500 C: 8690 Min: 14 Act: 107 Avg: 141 Max:

367

This simulation proved that the RTDS scheduler

continued to transfer the control to the driver

domain within the predefined period and budget

of 400 microseconds, independent of system load.

This way, it might be possible to configure

different domains to run with a specified budget

and period.

Partitioned Scheduling

Evaluation

Partition scheduling subscribes to the idea of

reallocating all the time-critical code to the

separate physical core. This way, the scheduler

avoids rescheduling non-time-critical tasks and

locking all the cores globally. The following

experiments proved that the system is capable of

achieving real-time performance when separating

time-critical tasks (i.e., OSes) to the separate

physical processor by assigning and binding

virtual CPUs to the physical core and scheduling

virtual CPUs on each core independently.

We bound all non-real-time domains to Core 0

and all real-time domains to Core 1, with a

specified budget of 1ms.

#xl vcpu-pin Domain-0 all 0

#xl vcpu-pin android_4.3 all 0
#xl vcpu-pin Domain-D all 1

#xl sched-rtds -d Domain-D -p 1000 -b 1000

The test running in Domain-D showed an average

latency below 100 microseconds and a top latency

below 1 millisecond, fitting real-time

requirements.

./cyclictest -t4 -p 20 -n -i 10000 -l 1000 -m

/dev/cpu_dma_latency set to 0us

policy: fifo: loadavg: 0.00 0.04 0.05 1/72 892
T: 0 (889) P:20 I:10000 C: 459 Min: 17 Act: 56 Avg: 72 Max: 950

T: 1 (890) P:20 I:10500 C: 436 Min: 34 Act: 116 Avg: 88 Max: 973

T: 2 (891) P:20 I:11000 C: 414 Min: 38 Act: 50 Avg: 95 Max: 880
T: 3 (892) P:20 I:11500 C: 395 Min: 19 Act: 54 Avg: 73 Max: 444

Mixed Scheduling

Evaluation

This is another test scenario to support different

schedulers in different physical CPU pools. As the

hypervisor schedules all virtual CPUs on a

physical core using the default credit scheduler,

the real-time domain has to migrate to the

physical CPU. This way, the system binds

partitioned credit and real-time schedulers to the

dedicated PCPUs.

Since the guest domain is the major source of

latency, we will first look into the latency with the

guest domain. Then we will analyze latency with

Dom0 for further investigation.

To bind the real-time domain, we performed a test

with the following command sequence:

/ # xl cpupool-cpu-remove Pool-0 1

/ # xl cpupool-create name=\"realtime\" sched=\"rtds\"

/ # xl cpupool-cpu-add realtime 1
/ # xl cpupool-migrate Domain-D realtime

/ # xl sched-rtds -d Domain-D -p 1000 -b 1000

The test running in the driver domain showed an

average latency below 100 microseconds and a

top latency below 1 millisecond, fitting real-time

requirements.

./cyclictest -t4 -p20 -n -i 10000 -l 1000 -m > tmp

cat tmp

/dev/cpu_dma_latency set to 0us

policy: fifo: loadavg: 1.28 0.50 0.18 1/70 894

T: 0 (891) P:20 I:10000 C: 1000 Min: 11 Act: 32 Avg: 66 Max: 127
T: 1 (892) P:20 I:10500 C: 951 Min: 11 Act: 91 Avg: 66 Max: 132

T: 2 (893) P:20 I:11000 C: 906 Min: 11 Act: 34 Avg: 65 Max: 132

T: 3 (894) P:20 I:11500 C: 865 Min: 12 Act

CyclicTest Evaluation

We investigated the global and partitioned real-

time scheduling. We discovered that partitioned

and mixed scheduling schemes were suitable for

time-critical tasks (e.g. real-time support), while

global real-time scheduling required domain

parameter configuration and tuning. Global real-

time scheduling appears to provide a larger

overhead due to virtual CPU migration and global

lock based run-queue management and cache

penalties.

A pro of partitioned real-time scheduling is a real-

time domain performance on the dedicated

physical processor core, while the con is a

performance drop of the domains scheduled on

another physical core. Alternatively, global

scheduling provides larger overhead with no

expected performance drop for non-real-time

domains.

Packet Latency

This section presents the packet latency in RT-

XEN by measuring the packet latency with ping

tests. The measurement environment included

three guests OSes run over RT-XEN on the

Nautilus ™ system.

The driver domain acted as a server for

communication with the host PC over Ethernet

and provided a virtual Ethernet interface for

communication with the guest domain. The guest

domain was a ping recipient domain that had soft

real-time requirements in handling network

packets. The thin domain had 100% CPU

workloads to ensure work-conserving execution.

An external server sent ICMP request packets to

the guest domain over NAT. RT-XEN used the

RTDS scheduler, and a timer tick was set to 10ms.

We obtained the distribution graphs from 100

ping samples.

Since the guest domain is the major source of

latency, we will first look into the latency within

the guest domain. Then we will analyze latency

within the driver domain for further investigation.

Credit Scheduler Packet Latency

First, we measured packet latency within the guest

domain and looked at the effect of the credit

scheduler on the virtual CPU. To present packet

latency within the guest domain, we measured the

latency in the interval from I/O task completion at

netback in the guest domain to I/O task

completion at ICMP reply in the driver domain.

To test non-boosted VCPU, we gave different

CPU-intensive workloads (i.e., 0%, 30%, 60%,

and 75%) to the guest domain. In addition, we

assumed that I/O completion latency within the

guest domain was small enough to ignore because

it was much smaller than the other latency.

Therefore we intentionally omitted it from all our

results. This small latency was partly due to ICMP

handling in Linux kernel, in which ICMP packets

were handled within a softirq context. As such,

little overhead was involved.

Load Idle 30,00% 60,00% 75,00%

 0,747 1,27 2,61 2,61

 0,728 1,65 8,93 8,93

 0,569 1,69 1,15 1,15

 0,619 0,609 1,15 1,15

 0,584 1,76 8,93 8,93

 0,817 1,71 8,93 8,93

 0,606 0,672 8,93 8,93

 0,585 1,59 8,93 8,93

 0,732 1,59 8,93 8,93

 0,673 1,59 8,93 8,93

 1,03 0,642 8,93 8,93

 0,556 1,63 8,93 8,93

 0,641 1,62 8,92 8,92

 0,645 1,62 8,93 8,93

 0,673 0,633 8,93 8,93

 0,989 1,66 8,93 8,93

 0,676 1,62 1,18 10,18

 0,634 1,62 79,3 79,3

 0,552 0,548 84,7 84,7

 0,692 1,68 1,18 1,18

 0,525 1,66 8,96 8,96

 0,706 0,531 8,92 8,92

Average 0,680864 1,345227 13,87409 14,28318

Max 1,03 1,76 84,7 84,7

Stdev 0,128651 0,472641 22,29284 22,13079

As shown in the table, when all domains had a 0%

workload, 99% of the packets were handled

within 1 millisecond. On the other hand, when the

thin domain had a 100% CPU load (30% load),

only 27% of the packets were handled within 1

millisecond.

The below figure shows a clear trend in which

fewer packets were handled within 1 millisecond

time-bound as the CPU load increased from 20%

to 100%. This is mainly due to a non-boosted

virtual CPU, which is affected by the CPU

workload of itself. When we added a driver

domain 100% virtual CPU load (60% total load),

all of the packets missed the 1 millisecond

deadline, with peak latency values being more

than 100 milliseconds.

The figure also shows a clear trend in which fewer

packets were handled within 1 millisecond time-

bound as the CPU load increased from 0% to

75%. This is mainly due to a non-boosted virtual

CPU, which is affected by the CPU workload of

itself under the credit scheduler’s control.

Dra7xx Board

Dom-D Guest

U
Serial

Interface

PC-1

PC-2

Ethernet Interface

PC-2 is on same

LAN with Dra7xx

Board

Guest Domain has

- 2 VCPUs
- SMP Linux Kernel
-Virtual Ethernet
Frontend

Driver Domain has

- 2 VCPUs
-1G HW Ethernet
-SMP Linux Kernel
-Serial Interface
-Virtual Ethernet
Backend

Console

Also note that, as shown in the above figure, most

packets were handled within 10ms (i.e., the

scheduling period of the credit scheduler). When a

packet handling was delayed by a non-boosted

virtual CPU, it was dispatched at the next

scheduling period. Consequently, 70ms + latency

was presented.

Partitioned RT Packet Latency

Next, we measured packet latency within the

guest domain and looked at the effect of the

RTDS scheduler of the virtual CPU. To present

packet latency within the guest domain, we

measured the latency in the interval from the host

to the driver domain to I/O task completion in the

guest domain at ICMP reply. We gave the same

different CPU-intensive workloads (i.e., 0%, 30%,

60%, and 75%) to the thin and driver domains.

Thus, the guest domain was intentionally omitted

from all our results.

We configured the driver domain as a high-

priority domain with a period and budget of 0.2ms

and running net-backend. Since the guest domain

could be preempted by the driver domain, we set

it to a harmonic period and budget of 400

microseconds, running net-frontend. We kept the

thin domain completely preempted by the others

and set up 1 millisecond as its scheduling period.

The below table represents the round-trip test

results:

Load Idle 25,00% 50,00% 75,00%

 0,903 2,62 2,62 2,67

 0,595 1,18 1,18 1,16

 0,554 1,18 1,18 1,25

 0,553 1,15 1,15 1,21

 0,586 1,15 1,15 1,24

 0,576 1,19 1,19 1,23

 0,58 1,16 1,16 1,13

 0,55 1,15 1,15 1,4

 0,55 1,17 1,17 1,37

 0,611 1,15 1,15 1,15

 0,475 1,18 1,18 1,16

 0,584 1,18 1,18 1,15

 0,593 1,15 1,15 1,46

 0,555 1,15 1,15 1,44

 0,635 1,15 1,15 1,43

 0,546 1,16 1,16 1,15

 0,459 1,16 1,16 1,15

 0,586 1,15 1,15 1,12

 0,529 1,15 1,15 1,49

 0,578 1,15 1,15 1,12

 0,5 1,15 1,15 1,15

 0,554 1,15 1,15 1,51

Average 0,575091 1,226364 1,2264 1,324545

Max 0,903 2,62 2,62 2,67

Stdev 0,084125 0,311564 0,3116 0,329888

In the above table, when all domains had a 0%

workload, 100% of the packets were handled

within 1 millisecond. When we loaded a less

responsive thin domain 100% CPU load (30%

total load), only 99% of the packets were handled

within 1 millisecond with small scheduling

overhead (i.e., 150 microseconds). The picture

changed a bit when we added a driver domain

100% virtual CPU load (50% - 75% total load).

The packet latency deadline adjusted to the small

scheduling overhead, although the packets were

missing the 1 millisecond deadline. The total

average and peak latencies increased a bit to 1.32

and 2.67 milliseconds respectively.

The below figure shows a clear trend in which

most packets were handled within 1 millisecond

and scheduling overhead (1.5 approximately) was

time-bound as the CPU load increased from 0% to

75%. This demonstrates a very smooth packet

latency transition within such a configuration and

could be applicable to soft-real-time needs.

0.68 1.35

13.87
Average

1.03 1.76

84.70
Maximal

0.13 0.47

22.29

Stdev

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0,00% 25,00% 50,00% 75,00%

M
IL

LI
SE

C
O

N
D

S

Packet Latency

Global RT Packet Latency

Eventually we would like to estimate the packet

latency for the symmetric multi-processing

support virtualization support. We are using the

same measurement procedure to obtain the latency

in the interval from the host to the driver domain

to I/O task completion in the guest domain at

ICMP reply. We gave the same different CPU-

intensive workloads (i.e., 0%, 30%, 60%, and

75%) to the thin and driver domains.

The schedule configuration remained the same as

that for the partitioned scheduled: 200

microseconds for netback at the driver domain,

400 microseconds for the front-end in the guest

domain, and 1 millisecond for the thin domain.

The below table represents the round-trip test

results:

Load Idle 25,00% 50,00% 75,00%

 0,631 0,764 0,764 0,771

 0,819 0,716 0,716 0,534

 0,549 0,663 0,663 0,612

 0,551 0,729 0,729 1,2

 0,515 0,492 0,492 0,855

 0,539 0,624 0,624 1,14

 0,581 0,652 0,652 2,57

 0,556 0,517 0,517 1,01

 0,589 0,659 0,659 1,33

 0,626 0,584 0,584 0,681

 0,612 0,501 0,501 1,13

 0,578 0,52 0,52 0,713

 0,626 0,61 0,61 1,31

 0,605 0,427 0,427 0,883

 0,524 0,644 0,644 1,08

 0,523 0,594 0,594 0,687

 0,677 0,757 0,757 0,714

 0,707 0,629 0,629 0,588

 0,508 0,812 0,812 1

 0,601 0,439 0,439 0,585

 0,535 0,588 0,588 1,05

 0,613 0,538 0,538 0,897

Average 0,5938636 0,611773 0,6117727 0,97

Max 0,819 0,812 0,812 2,57

Stdev 0,0725083 0,105114 0,105114 0,4313284

100% of packets were handled within 1

millisecond on the idle system. The thin domain

load of 100% (30% total load) barely increased

peak and average latencies. Again, the picture

changes as we added the driver domain workload

(75% total load). The packet latency deadline

adjusted to small scheduling overhead, although

the packets were missing the 1 millisecond

deadlines. The total average and peak latencies

increased similarly to the partitioned scheduling

case.

The below figure shows a clear trend in which

most packets were handled within 1 millisecond

for CPU load increases of 0% to 30% (i.e., thin

domain workload). The peak latency adjusted just

when we added the driver domain (net-backend)

to the game, while the average latency remained

below the 1 millisecond bound.

0.58

1.23 1.23
Average

0.90

2.62 2.62
Maximal

0.08
0.31 0.31

Stdev

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0,00% 25,00% 50,00% 75,00%

M
IL

LI
SE

C
O

N
D

S

Packet Latency

0.59 0.61 0.61
Average0.82 0.81 0.81

Maximal

0.07 0.11 0.11

Stdev

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0,00% 25,00% 50,00% 75,00%

M
IL

LI
SE

C
O

N
D

S

Packet Latency

RT-XEN vs Credit I/O

Latency

We performed PV-NET latency measurements for

three different scheduling configurations:

 Credit scheduler

 RT-Xen global scheduler

 RT-Xen partitioned scheduler

The results are available for different schedulers,

and we performed every test for different

workloads (i.e., idle, 25% load, 50% load, 75%

load). The workload was generated by running

several whetstone instances in the thin and driver

domains.

The credit scheduler showed a very large maximal

latency that is above 80 milliseconds under heavy

load conditions, with 10 milliseconds being the

average.

The partitioned RT-XEN scheduler showed

optimal latency values. The worse-case packet

latency deadline was 2.67 ms under heavy load

conditions.

The global scheduler test results were pretty close

to those of the partitioned scheduler, although the

average and peak latency increased more slowly

than the partitioned as workload progressed.

Conclusion

In this paper, we discussed scheduling the packet

latency in RT-Xen. Due to the limitations of the

current default credit scheduler and interrupt

paravirtualization of guest OSes, a guest domain

cannot handle network packets within a

predictable time bound with Xen. To provide a

predictable latency bound, this paper proposes

using RT-Xen scheduler.

Our conclusion is that every domain configuration

has an impact on the Intra-VM latency during the

tuning of the global scheduler settings. In fact, the

domain with a smaller period and budget is

scheduled more often (thus being able to operate

within time-critical constraints), while non-real-

time domains should be configured with a larger

period and the budget. This approach allows Xen

to preempt non-real-time domains by real-time,

thereby keeping the latency low even for an Intra-

VM switch.

