
36 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 11, NO. 1, MARCH 2014

Multi-Granularity Memory Mirroring via
Binary Translation in Cloud Environments

Zhengwei Qi, Member, IEEE, Haoliang Dong, Wei Sun, Yaozu Dong, and Haibing Guan, Member, IEEE

Abstract—As the size of DRAM memory grows in clusters,
memory errors are common. Current memory availability strate-
gies mostly focus on memory backup and error recovery. Hard-
ware solutions like mirror memory needs costly peripheral equip-
ments while existing software approaches reduce the expense but
are limited by the high overhead in practical usage. Moreover,
in cloud environments, containers such as LXC now can be used
as process and application-level virtualization to run multiple
isolated systems on a single host. In this paper, we present
a novel system called Memvisor to provide high availability
memory mirroring. It is a software approach achieving flexible
multi-granularity memory mirroring based on virtualization and
binary translation. We can flexibly set memory areas to be
mirrored or not from process level to the whole user mode
applications. Then, all memory write instructions are duplicated.
Data written to memory are synchronized to backup space in the
instruction level. If memory failures happen, Memvisor will re-
cover the data from the backup space. Compared with traditional
software approaches, the instruction level synchronization lowers
the probability of data loss and reduces the backup overhead.
The results show that Memvisor outperforms the state-of-the-art
software approaches even in the worst case.

Index Terms—Application level memory mirroring; multi-
granularity high availability; virtualization.

I. INTRODUCTION

GOOGLE’S latest research shows memory (DRAM) er-
rors are common in modern compute clusters, and more

than 8% of DIMMs affected by errors per year [1]. This
rate is unacceptable for commercial cloud service providers,
e.g., Google App Engine [2] and Amazon EC2 [3], which
require availability with an annual uptime percentage at least
99.95%. Compared with system crash, what is worse is that
memory errors can lead to data corruption, which is a disaster
in financial, medical and scientific fields [4].

There are soft errors (e.g., a bit flipped by cosmic rays)
and hard errors (memory damaged physically) [1] in modern
complex computing environments. To achieve memory High
Availability (HA), hardware HA approaches are proposed at
first. Parity [5] and ECC [6] are the earliest way to enhance
memory availability. The parity memory uses parity check

Manuscript received June 23, 2013; revised October 27, 2013. The associate
editor coordinating the review of this paper and approving it for publication
was G. Martinez Perez.

Z. Qi, H. Dong, and W. Sun are with the School of Software and
the Shanghai Key Laboratory of Scalable Computing and Systems, Shang-
hai Jiao Tong University, Shanghai, China (e-mail: {qizhwei, donghl,
zmsw2008129}@sjtu.edu.cn).

Y. Dong is with the Open Source Technology Center, Intel, Shanghai, China
(e-mail: eddie.dong@intel.com).

H. Guan is with the Shanghai Key Laboratory of Scalable Computing
and Systems, and Department of Computer Science, Shanghai Jiao Tong
University, Shanghai, China (e-mail: hbguan@sjtu.edu.cn).

Digital Object Identifier 10.1109/TNSM.2014.031714.130415

code [7] to detect a single bit error, while ECC memory uses
Hamming Code [8] to detect and restore a single bit error.
The disadvantage of them is that they cannot handle hard
errors. Mirror memory solution [9] is proposed to solve the
problem, which uses doubled memory chip to back up the data
on the fly. However, both ECC memory and mirror memory
are expensive and need the support of special hardware.

Software HA approaches are developed quickly in recent
years. Software ECC [10] works like the hardware ECC,
which provides a library for developers to enhance specific
blocks of memory. However it incurs a high overhead. Google
and Amazon have designed some special systems for HA,
such as Google File System [11] and Amazon Dynamo [12].
They store same data in two or more physical machines to
prevent data loss. But both of them are designed and run in
the application level, which cannot provide transparent HA
for operating systems or other applications. Some Virtual
Machine (VM) based solutions address this shortage. Now
Xen hypervisor supports Remus [13] and tools (included with
Xen 4.0+). So VM-level High Availability is a critical feature
for network and service management in cloud environments.
Today, LXC (http://lxc.sourceforge.net/) is the user space
control package for Linux Containers, a lightweight virtual
system mechanism. LXC builds up from chroot to implement
complete virtual systems, adding resource management and
isolation mechanisms to Linux’s existing process management
infrastructure. So application-level and VM-level High Avail-
ability play an important role in these containers. However,
Remus is a system using virtualization technology to back up
the whole VM by checkpointing, while it does not back up the
system on the fly. So the data between two checkpoints will
loss if a memory error happens, and the overhead of Remus
is 103% with 40 checkpoints/second.

To efficiently improve the availability at a low cost, we have
previously presented Memvisor in CLUSTER 2012 [14], an
application level cost-effective software memory mirroring. In
this paper, we extend it to support flexible user-mode high
availability via process or application level multi-granularity
memory mirroring. Memvisor uses binary translation to mod-
ify applications to replicate the data to mirror memory so when
a memory failure happens, the data could be restored from the
replica.

Memvisor is a hypervisor providing process-level and
application-level high availability based on hardware virtu-
alization. Our design is based on two core technologies,
i.e., Direct Page Table (DPT) based mirroring space and
Static Binary Translation. Compared with Shadow Page Table
(SPT), DPT can reduce the overhead without keeping the

1932-4537/14/$31.00 c© 2014 IEEE

QI et al.: MULTI-GRANULARITY MEMORY MIRRORING VIA BINARY TRANSLATION IN CLOUD ENVIRONMENTS 37

Fig. 1. The high-level architecture of Memvisor. The gray blocks indicate
the difference between Memvisor and a typical hypervisor. The VMs can
be classified as three categories: ordinary VM, process level HA VM, and
application level HA VM.

synchronization between original virtual memory and shadow
memory per process switch. Compared with static binary
translation, dynamic binary translation often needs more sys-
tem resources including cache or runtime support components,
which also incur more overhead. Also, we use hypervisor
based solution to provide multi granularity memory mirroring,
because hypervisor such as Xen, VMWare, and KVM are
popular in cloud environments which are easy to be integrated.
Moreover, hypervisor controls the low-level resources, which
will not leak some sensitive information, thus providing a
strong isolation in cloud applications.

Generally, Memvisor instruments mirror instructions not
only for user mode code but also can be extended to kernel
mode code. Only low-cost memory is required to recover
the data when the memory corrupts. Also Memvisor is a
more flexible and low-priced approach than the hardware
solutions. The virtualization technology assists it with the
ability of supporting VMs with or without mirror memory
feature on a same physical machine. And the binary translation
technology offers the choice of process level or application
level high availability. Also the mirror memory could easily be
set to more than two copies for some special mission-critical
systems.

Memvisor is also more efficient than other software ap-
proaches. The results show that the performance of CPU
intensive tasks is unaffected, and even in the worst situation.
Our stressful memory write benchmark shows the backup
overhead of 80%, less than 100%+ of Remus and other
software approaches.

The rest of the paper is organized as follows. The overall
architecture and the process of Memvisor are introduced in
Section II. Section III gives detailed implementation and
Section IV evaluates the performance and overheads. Section
V has a technical discussion and Section VI covers the related
work. At last Section VII concludes the paper.

II. DESIGN

Memvisor is a modified hypervisor which provides multi-
granularity application level high-availability memory fea-
tures. Memvisor inserts instructions (mirrored instructions)

through binary translation technology and replicates data to
this space. The replica can be used to recover the data when
a memory error happens.

A. Architecture

Figure 1 illustrates the high-level architecture of Memvisor.
Virtual machines can be configured as native or HA VMs,
i.e., process level or application level high availability VM.
The different types of VMs can be run on the same physical
machine. Memvisor can be divided into two components.
First is the memory management module, and second is the
binary translation module. However, compared with hardware
memory mirroring solution, the shortcoming of using modified
hypervisor is the overhead caused by mirror instructions.
Another problem is that this modification is not transparent
to the hypervisor, so it is not compatible with non-Memvisor
based environment.

Memory management module monitors the page table
related operations to create mirror page table. Memvisor
maintains two sets of page tables. One is native page table
which deals with native address mapping. The other is mirror
page table that handles the mirror address mapping. We choose
the hypervisor instead of the operating system (OS) because
the memory can be replicated at the VM granularity. And it
is flexible to switch VMs between high available memory and
native memory. If the data of an OS are corrupted, the OS
will crash and become unable to recover the data by itself.
But using the hypervisor overcomes this shortage, because
hypervisor has less code size than OS with a small trusted
computing base, which are robust and secure in most cases.

Binary translation module inserts mirror instructions,
which identifies all memory writing instructions and replicates
them. The difference between original instruction and repli-
cated instruction is the destination address. Memvisor defines
a concept “mirrored virtual address (mva)” in addition to the
“native virtual address (nva)”. An mva is a virtual address
mapped to an additional physical area. This physical area is
created by Memvisor to store the redundant data, and we call
an address in this area a mirrored physical address (mpa). We
define an abstract function mirror to describe the relationship
of these two kinds of virtual addresses as:

mva = mirror(nva) (1)

The variable mva stands for mirrored virtual address and
variable nva stands for native virtual address. With the function
mirror, we can distinctly describe the workflow of data
replication in Memvisor.

B. The workflow of redundancy in Memvisor

Memvisor uses the redundant data for recovery, and the
redundant data are created by mirrored instructions. The
process of this workflow includes several steps:

1) Startup a virtual machine: Initially, Memvisor creates
a candidate VM or a process and allocates the physical
memory for it. In our system, it also allocates another
equal size memory as the mirrored physical memory for
the target VM.

38 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 11, NO. 1, MARCH 2014

mov $2, mirror(addr)

Fig. 2. A mirrored instruction will be created to write the same data to the
mirrored address.

Fig. 3. The process of memory recovery: 1. The correct memory status. 2.
If a page is corrupted, a new page will be allocated for the VM. 3. Map the
virtual address to the new page. 4. Copy data from the mirrored address.

2) Create a page table: When the OS creates a page table
entry (PTE) to map nva to npa (native physical address),
Memvisor will intercept this process and create a mir-
rored PTE map mva = mirror(nva) to mpa (mirrored
physical address).

3) Write data to memory: When a write instruction writes
data to nva, another instruction will be inserted by binary
translation technology, and write the same data to mva.
Since mva is mapped to another physical address: mpa,
the data can be physically copied (Figure 2).

When a memory failure happens, a hardware detection
mechanism (e.g., parity check [5] or ECC) will notify Memvi-
sor, and Memvisor will quickly and effectively retrieve the
corrupted data by the following steps (Figure 3):

1) Prepare a new physical page: If a page with memory
errors is detected, the data should be recovered in
another mirror physical block. First, we should prepare
a new memory page to recover the data.

2) Remap the new page: Rewrite the corrupted PTE and
map it to the new page just allocated, so we build a new
map between the new physical page and the corrupted
virtual memory address.

3) Recover the corrupted data: Copy the mirrored data
from mva to nva. After data recovery, the program will
continue to run.

C. Binary translation

Memvisor uses binary translation technology to duplicate
memory write instructions. When a memory write instruction
appears, we should insert a mirror instruction to back up the
memory and keep the native and mirror virtual memory space

Fig. 4. The process of memory allocation in Memvisor. During the hypercall
processing, first the native page table and then the mirrored page table are
created.

consistent. We choose static binary translation, because the
redundant instructions are added at the compile time which
reduces the performance overhead. Dynamic binary translation
which translates the instructions at the run time is also an
alternative design.

There are some side effects after the mirrored instructions
are inserted. For example, if a hardware interrupt happens
between one native instruction and the following mirrored
instruction, the data will not be replicated for a relatively long
time. We will discuss this issue in Section V.

III. IMPLEMENTATION

We have implemented the Memvisor prototype in Xen-3.4.2
with 231 lines of code. Those modifications include two parts:
First, a block of physical memory should be allocated as the
mirrored physical memory when a virtual machine starts up.
Second, a mirrored PTE should be created when the native
PTE is created. We choose Linux 2.6.30 as the Guest OS, and
the guest OS memory management strategy also needs to be
changed slightly. Finally we will introduce the approach to add
mirrored instructions writing data to the mirrored memory.

A. Mirrored page table

Although we can fill in the mirrored PTE in the page fault
process, it will result in a low performance because of the
overhead of intercepting frequent page faults. So we need to
modify the hypervisor memory management to ensure that
the mirrored PTE and native PTE are created simultaneously.
There are three memory virtualization technologies: direct
page table (DPT), shadow page table (SPT) [15] and extended
page table (EPT) [16]. EPT is a hardware assistant memory
virtualization, which cannot be modified by software. Mean-
while, DPT and SPT are the software implementations which
can be employed in Memvisor. So we will introduce both
technologies briefly:

• Direct page table: When a guest OS modifies sensitive
page tables, it will uses a hypercall to notify Memvisor.
Then, Memvisor intercepts the hypercall and fills in the
PTE if the operation is legal. So a mirrored PTE can be
filled in after the native PTE is created (Figure 4).

QI et al.: MULTI-GRANULARITY MEMORY MIRRORING VIA BINARY TRANSLATION IN CLOUD ENVIRONMENTS 39

0xFFFFFFFFFFFF
0xFFFFFC000000

0x800000000000

0x000000000000

Fig. 5. A simple memory layout of the Memvisor implementation. The
light grey area means native area while deep gray means mirrored. Virtual
addresses are mapped to the physical addresses by the page table.

• Shadow page table: DPT needs to modify the source
code of guest OS. On the contrary, once the guest OS
modifies cr3 to point to the new page table, it is a
sensitive operation which will notify Memvisor. Then
Memvisor will translate the native page table to a new
table and reset cr3 to point to the new page table
with mirrored PTEs. During this translation process, SPT
needs not modify the source code of guest OSes.

In SPT, due to frequent process switches, the cr3 will be
accessed very busy. Once cr3 is changed, it will cause a
page table update to keep the consistency with the mirrored
page table, which incurs a big overhead. Although we have
implemented both DPT and SPT, we finally choose the DPT
technology to evaluate its performance and correctness.

B. Modified guest OS

Memory management in Linux should be modified to sup-
port Memvisor. One of them is the vm struct which records
the page table including the map between virtual and physical
address [17]. When a process is killed, Linux will iterate
through the page table with the help of vm struct to release the
virtual memory. However, we modify the page table through
Memvisor, but the guest OS does not know this modification.
Thus, an error will occur because there is no vm struct for the
mirrored page table. To avoid this problem, we add a special
flag in a PTE for mirrored memory, which can be used by
the guest OS to identify a native PTE from a mirrored PTE.
When the guest OS finds that a PTE is mirrored, the guest OS
just ignores it.

C. Modified memory layout

In this paper, we employ the plus operation in the mirror
function, that means:

mva = mirror(nva) = nva + offset (2)

offset is a relatively large integer constant, and the value of
it will be discussed later. The plus operation does not need
additional instructions on the x86 platform, because it can be
integrated into mov instructions.

…
movq $4, 144(%rdi)

…
call log_text

…
addq %rdx, (%rax)

…
pushq %rbp

…
.Log_text:

...

…
movq $4, 144(%rdi)
movq $4, offset+144(%rdi)

…
call log_text

...
addq %rdx, (%rax)
addq %rdx,offset(%rax)

…
pushq %rbp
movq %rbp, offset(%rsp)

…
.Log_text:
pushq %rax
movq 8(%rsp), %rax
movq %rax, (offset+8)(%rsp)
popq %rax

...

Fig. 6. The process of static binary translation.

Figure 5 shows a memory layout in our implementa-
tion. The lower virtual addresses are for user space which
includes heap and stack space, and the higher addresses for
the kernel. Memvisor occupies the highest virtual addresses.
Each user mode virtual memory area has its own related
mirrored area. The native and the mirrored virtual area are
mapped to different physical memory to ensure that data
is replicated physically. This figure is a simple layout, the
actual memory layout will be more complicated, e.g., a multi-
threaded program has more stack areas, and the dynamic link
area is also not shown in this figure.

D. Synchronize the native memory and the mirror memory

To ensure memory is replicated synchronously, a writing
operation to the native memory should be followed by an
identical writing operation to the mirrored memory. This can
be done via dynamic or static binary translation technology.
We employ the latter to implement the process.

Memvisor performs static binary translation with the help of
the GNU compiler collection (GCC). After the compiler (CC1)
generates the assembly-language source files. Memvisor ana-
lyzes them and adds mirrored instructions. Then Memvisor
passes the modified source files to the assembler (AS) which
translates them into object files. Finally the linker (LD) merges
the object files into an executable file with modified libraries.

As we described in the previous section, now the mirrored
space has been created and original instructions have been
fetched. Then there are two problems needs to be solved: (1)
What kind of mirror instructions should be injected? (2) Where
to inject mirror instructions?

For the first problem, choosing a mirror instruction is
based on the type of original instructions. Only memory write
instructions should be mirrored. If an original instruction is
relatively simple, so the virtual address can be calculated in
an explicit way, then injecting a mirror instruction is relatively

40 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 11, NO. 1, MARCH 2014

simple. That is, we just copy the original instruction types and
formats, and then replace the original address with mirrored
address. If an original instruction is relatively complex, so
memory address cannot be calculated in this simple static
translation. We should need some special instructions to
duplicate the original space. Generally, an original instruction
needs one mirror instruction. But for some complex original
instructions, such as int, we may need more than one instruc-
tion to back up mirrored memory.

For the second problem, once original instructions mod-
ify the original memory data, we then update the mirrored
memory. Generally, mirroring instructions always follow the
corresponding original instructions, such as mov instruction.
But for some instructions will change the execution sequence
of program, such as call, mirror instruction should not be
inserted after just original instructions. Because call will push
a return address into the stack, so it is a challenge to keep the
mirror stack consistent with original stack. We will discuss
this case soon.

E. Handle various kinds of write instructions

Most instructions access registers and many of them access
memory. Instructions that change the data in memory can
be classified into two main types: explicit write instructions
and implicit write instructions. Memvisor can handle both
precisely with specific approaches.

1) Data transfer instructions: Most of the data trans-
fer instructions are memory-related, i.e., mov, push,
pusha/pushad, and xchg. According to the style of memory
access, they can be divided into two kinds: explicit and
implicit write instructions.

Explicit write instructions: Most memory writing instruc-
tions are explicit write instructions (i.e., mov, push) which
store data directly to a memory address. Memvisor can get the
native virtual address and calculate the corresponding mirrored
virtual address via equation (2). Then a mirrored instruction
should be added to write the same data to the mirrored virtual
address.

Take mov as an example, we can inject the mirror instruc-
tions as follows,

......
movl %eax, (%esp)
movl %eax, offset(%esp)
......
movb $0, (%eax)
movb $0, offset(%eax)
......

Implicit write instructions: Some instructions manipulate
the data in memory indirectly (i.e., call, int, etc.). Sometimes,
the native virtual address is invisible within the scope of
the instruction. For example, when a push instruction saves
the current data into the stack, the native virtual address is
represented by the value in the stack pointer (SP) register
(i.e., rsp register). Memvisor should first get the native virtual
address from the SP register and add an instruction that
saves the data to the mirrored memory address calculated
via equation (2). These instructions generally consist of many

complicated procedures in which Memvisor should catch the
memory writing ones.

Take push as an example, we can inject the mirror instruc-
tions as follows,

......
pushl %eax
movl %eax, offset(%esp)
......
pushl %esp
pushl %eax
movl (%esp), %eax
movl %eax, offset(%esp)
popl %eax
......

2) Arithmetic, logical and shift instructions: This kind of
instructions include arithmetic, logical and shift operations as
follows,

Arithmetic add/sub/imul/idiv/inc/dec
Logical and/or/xor/not
Shift sar/shr/sal/shl/ror/rol
Bit operations bt/btc/btr/bts

The format of these instructions is Opcode Data Address or
Opcode Address. So the address of these instructions can be
obtained explicitly. Therefore, we can deal with them as the
same to previous explicit write instructions.

3) Control transfer instructions: Unlike data transfer in-
structions, “jmp”, “call”, and “int” are complex to mirror.
For example, all calls access registers and memory. They
save the return address on the stack and branch to the called
procedure. Memvisor should save these data which are pushed
onto the stack. But this problem cannot be solved by just
adding a mirrored instruction after the call instruction, because
it will not be executed until the called procedure returns. So
Memvisor saves this data right at the beginning of the called
procedure and writes it to the mirrored memory.

Take call as an example, we can inject the mirror instruc-
tions as follows,

......
call grep
......

grep:
pushl %eax
movl %eax, offset(%esp)
movl 4(%esp), %eax
movl %eax, offset+4(%esp)
popl %eax
......

For system call instruction int, if we only focus on user-
mode mirroring, it can be ignored. However, it is not hard
to obtain a kernel-mode mirroring. If the privilege level is
changed, i.e., from user mode to kernel mode, int will push
five registers, i.e., SS, ESP , EFLAGS, CS, and EIP into
the stack. If not, only latter three registers will be pushed
into the stack. So it is a change to mirror this instruction.
Therefore, we should know the context before int. Another
problem is where to inject the mirror instructions. Once int is
called, we have no chance to inject mirror instruction to back

QI et al.: MULTI-GRANULARITY MEMORY MIRRORING VIA BINARY TRANSLATION IN CLOUD ENVIRONMENTS 41

up the current return address. Similar to call, we inject the
code at the beginning of interrupt handler.

Take int as an example, we can inject the mirror instructions
as follows,

......
int $64
......

alltraps:
pushl %eax
movl %eax, offset(%esp)
movl 4(%esp), %eax
movl %eax, offset+4(%esp)
movl 8(%esp), %eax
movl %eax, offset+8(%esp)
movl 12(%esp), %eax
movl %eax, offset+12(%esp)
movl 16(%esp), %eax
movl %eax, offset+16(%esp)
movl 20(%esp), %eax
movl %eax, offset+20(%esp)
movl 24(%esp), %eax
movl %eax, offset+24(%esp)
popl %eax
......

4) String manipulation instructions: X86 has a kind of
special instruction called string manipulation, i.e., movsl,
stosb, and rep. These instructions use the register RSI as
source operator, and EDI as target operator. It is repeatedly
executed by the loop counter register ECX .

Because these instructions need to modify the value of ESI ,
EDI , and ECX in original instructions. So we should mirror
the destination operand address with an offset of EDI .

For example, we can inject the mirror instructions as
follows,

......
movl $19, %eax
movl %edx, %edi
movl %ebx, %esi
movl %eax, %ecx
rep movsl
addl $offset, %edx
movl %edx, %edi
subl $offset, %edx
movl %ebx, %esi
movl %eax, %ecx
rep movsl
......

5) Other instructions: Some binary instructions will use a
special prefix symbol, such as lock, addr16, etc. It is simple
to deal with these special instructions according to the prefix
notation. Moreover, we should only handle all memory write
instructions.

This paper only presented Intel 32 bit instruction set, but the
binary translation can be extended to the X86-64 instruction
set in a similar way, with the modification of the respective
length and name of registers. Actually, we have implemented
the binary translation of 64 bit instruction set.

6) Merge with modified libraries: An application will use
Application Programming Interface (API) provided by the
OS and libraries provided by various third parties. Some
function in libraries (i.e., C language standard library “printf”
function) will finally call APIs (i.e., write in Linux) or other
library functions. Meanwhile, some functions will not call any
APIs (i.e., strlen). Whether it includes APIs or not, it does
not affect the injection of mirror instructions. Static binary
translation should cover all the source code of the executable
file.

So Memvisor should modify not only the application source
code but also the standard libraries so that no memory writing
operation is beyond Memvisor’s reach. We first use static
binary translation to obtain a mirrored version of libraries,
then link them to get a final executable file. So the standard
libraries should be dealt with via the same approaches for
write instructions. Then the linker will merge object files and
the modified libraries into an executable file. In theory, all the
data in the mirrored memory should be identical to that in
native memory.

IV. EVALUATION

Memvisor adds additional instructions to the system, which
will lead to some performance impact. In this section, we
focus on the overhead of our approach. Before we measure
the performance, we will verify the correctness of Memvisor.
After that, a micro-benchmark will test the memory related
operations. Then we choose Sysbench [18] as the benchmark
to measure the performance impact. Finally, we test a practi-
cal application, SQLite [19] (represent for memory-intensive
tasks), to evaluate the performance and concurrency impact in
real world applications.

A. Test environment

Our tests are run on a Dell PowerEdge T610 server with
a 6-core 2.67GHz Intel Xeon CPU with 12MB L3 cache.
There are two Samsung 8GB DDR3 RAMs with ECC and
a 148GB SATA Disk. As we described in the previous
section, Memvisor is implemented on Xen-3.4.2. We choose
Linux as the guest OS, the kernel version is 2.6.30, and we
also deploy a lightweight system, Busybox-1.19.2 [20]. Each
VM is allocated two virtual CPUs and 64MB memory. We
use Sysbench-0.4.12 as our benchmark, and choose SQLite
representing real world applications.

Busybox, Sysbench and SQLite have had mirrored instruc-
tions inserted throughout, while the libc library and other
libraries have been added on-demand only.

B. Correctness verification

To verify the correctness of Memvisor, we added a hypercall
and code in Memvisor to compare the native memory and
the mirrored memory bit-by-bit. Given that not all kernel
instructions have been modified, we only verify the lower
virtual addresses, the user space. We choose Sysbench to do
the verification. When Sysbench is running, we invoke the
syscall and hypercall to verify the data, the result is that about
99.7% of data are exactly same. Especially in the user heap
area, the correctness is 100%. We also print the position of

42 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 11, NO. 1, MARCH 2014

incorrect data and find that all of them are located in the
static data area and stack area. We believe the incorrect static
data is due to the OS loader, and the incorrect data on the
stack is due to the libc library; neither of them has all write
instructions doing mirror because of a large engineering effort.
We also conducted our user-mode memory mirroring on the
XV6 platform, with Sysbench-0.4.12. We test the memory
from 5,120 bytes to 20,480 bytes, all user-mode memory are
100% identical to original memory. So our solution is practical
to back up the user-mode memory mirroring.

C. Case study: error recovery

Although memory errors are common in cluster, they are
scarcely happened in a single machine at a short period time.
To validate the availability of Memvisor, we design a case
study to emulate the memory error in VM and observe the
recovery.

In order to simulate the memory failure, we use a hypercall
to pollute a specific block of memory area (i.e., 5M bytes)
with garbage data. In real case, if memory corrupts, it will
notify OS to restart machines, but this notification is captured
by Memvisor. So in simulation test, it will invoke the recovery
process to restore data, as we described in previous sections.
We take a new page to replace the corrupted page, then we
remap the virtual memory to these new pages and recover the
data from mirrored pages. So when the recovery succeeds, we
can get the original context from the above polluted memory
with garbage data. This case study had been tested on user
mode applications. We invoke the hypercall when an applica-
tion is running. As we expected, when the recovery process
is finished transparently, the correctness of the application or
even the whole VM are unaffected. In our case, it takes about
24000 CPU cycles to restore each page. That means if the size
of error memory is less than 500KB, it can be fixed in 1ms.
In practice, both user and application will not be aware of the
failure due to such short recovery time.

D. Micro-benchmark

Memvisor modifies the hypervisor memory management
module to create the mirrored space which may lead to some
performance impact when creating the page table. For a user
application that means the malloc() function may take more
time. The additional mirrored instructions may also double the
time for a memory write. We therefore design a study case to
measure those operations. To observe the impact of cache,
memory tests are split into four categories: first-time write
cost, average sequential write cost, average random write cost
and average sequential read cost.

In malloc() operation, the overhead is mainly ascribed to
the creation of additional PTE (Page Table Entry) and the cost
of TLB (Translation Lookaside Buffer) flush. The impact on
performance is somewhat large when the allocated memory is
less than 256KB but much more limited when the size is larger.
This is because the initialization overhead for the allocation
of new memory (i.e., PTE, TLB). However, the overhead is
amortized over the larger allocation so the overall effect is
small.

Block size (Bytes)

Ti
m

e
pe

r b
yt

e
(C

PU
Cy

cle
s)

(d) Sequential read

0
10
20
30
40
50
60
70
80

1K 8K 64K 512K 4M

Block size (Bytes)

Ti
m

e
pe

r b
yt

e
(C

PU
Cy

cle
s)

(a) First-time sequential write
Block size (Bytes)

Ti
m

e
pe

r b
yt

e
(C

PU
Cy

cle
s)

(b) Average sequential write

0
20
40
60
80

100
120
140

1K 8K 64K 512K 4M

Block size (Bytes)

Ti
m

e
pe

r b
yt

e
(C

PU
Cy

cle
s)

(c) Random write

Fig. 7. (a) The overhead for first-time write is somewhat high at about 500%.
(b) The average overhead for sequential write is small at about 80%. (c) The
average overhead for random write is between those two at about 100%. (d)
The overhead for sequential read is almost none.

Figure 7 shows the performance result with different cache
impact. Without the assistance of cache, the overhead of first-
time write is somewhat high especially when the block size
is larger than 10KB. For blocks less than 10KB, the load is
not memory-intensive so the overhead of Memvisor is not
significant. The average overhead of the sequential write is
much lower than that of first-time write due to the high cache
hit rate. The average overhead of a random write is between
first-time write and sequential write because of the cache miss
rate; the larger the block size is, the higher the miss rate will
be. There is no big difference in the average overhead of the
memory read as expected.

E. Sysbench

Sysbench consists of several test cases for CPU, memory,
IO, etc. Figure 8 plots the geometric mean for Sysbench tests.
The IO test is configured as direct IO (no additional memory
as cache) to eliminate the memory impact. It is obvious
that Memvisor incurs a negligible overhead for CPU and
IO intensive applications. The mutex test has some memory
operations which cause a little overhead. The memory read
test has almost zero overhead while the memory write test
shows non-trivial impact. But the overhead is still acceptable
as the inevitable cost for high availability.

In the experiment, we fixed a bug in Sysbench-0.4.12; it
would do nothing in the memory read test due to the GCC
-O2 optimization. We also notice that the block size in a
memory-intensive test will affect the result. To illustrate this
relationship, we designed a test to measure the impact of read
and write memory with different block size ranging from 1MB
to 10MB. The result is shown in Figure 9. The overhead in
the memory read test is negligible and remains the same as
the block size increases. The overhead in the memory write
test is in line with the block size approximately at 80%.

QI et al.: MULTI-GRANULARITY MEMORY MIRRORING VIA BINARY TRANSLATION IN CLOUD ENVIRONMENTS 43

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Fig. 8. The overall result of Sysbench test suits.

Block size (Bytes)

To
ta

l T
im

e
(m

s)

Fig. 9. Sysbench memory-intensive test with different block size.

F. Database

Databases are widely used in cloud services, and it can be
also used to represent memory-intensive applications. SQLite-
3.7.11 is chosen to measure the performance impact. We write
a test suite including five kinds of operations: create, insert,
select, update and delete. Then, we measure the total execution
time (including the time of resolving SQL statements) for
each test with the database size of 50M bytes. In order to
compare the overhead, we use the normalized performance
benchmark in Figure 10. That is, the execution time of all
native operations are normalized as 1. So the higher of Y-axis
for modified operations means the larger overhead of mirror
memory. Figure 10 shows the results.

The results indicate that different operations present differ-
ent overheads in Memvisor.

The insert operation causes only little overhead while the
create operation needs double time to finish the same thing.
This difference depends on the implementation of SQLite,
e.g., the cache mechanism will cause frequent memory writing
operations. Luckily, the create operation is scarcely used
in a real world server, and the other four operations are
used frequently but cause a little performance impact. We
can conclude that Memvisor is also suitable for a database.
Moreover, in this result, the relative overhead on select is
larger than insert, which is counter-intuitive as select should
mostly consist of memory read operations while insert must
consist some memory write operations. However, SQLite has
many memory operations. For example, there are more than
fifty thousand movl instructions. Also there are a lot of call
and push instructions that require a lot of processing of system
resources, thus causing a different overhead between select

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Fig. 10. The performance impact for create, insert, select, update and delete
in SQLite.

and insert.

V. DISCUSSION

The current Memvisor still needs to resolve the following
issues. First, some memory areas cannot be made redundant
or cannot be recovered if an error happens, e.g., Memvisor
area, page table area, etc. Second is that the native virtual
address and the mirror virtual address may conflict. Last, we
will discuss a solution for the problem in a multi-threaded
environment which has been mentioned in Section II.

A. Special memory mirror areas

There are several memory areas such as page table, device,
DMA, and Memvisor own memory, which cannot be made
redundant. For example, in the x86 platform the page table is
located in physical memory. The problem is that replicating a
mirrored page table would need to write a new mirrored page
table, which would cause an infinite loop. For I/O-mapped
areas used by input/output devices, it is also unnecessary
to mirror because they are special I/O ports. In traditional
X86 architecture, we use in and out instructions to access
devices, while using mov instructions to access device for
I/O-mapped areas. Unfortunately, during binary translation
phase, we cannot distinguish mov instructions between I/O
mapped operations and normal memory access. Fortunately,
these special memory areas are located on the kernel mode
space, which do not affect our use mode application level
memory mirroring. So it is a great challenge to support kernel
mode memory mirroring for a system wide high availability.

B. Guest OS’s modification

Currently, we use DPT in the hypervisor level to optimize
performance. Although the major modification of source code
is in Memvisor, the guest OS such as Linux is also modified
to support DPT, because the page table created by DPT is not
transparent to a guest OS. That is, when Linux lookups its
page table, it will cause potential data inconsistency. So we
should modify the source code of Linux to ensure that it is
transparent to lookup operations when accessing the backup
page table. However, if we use SPT, this problem disappears
because it is transparent to the modification of the page table
in Linux.

Another problem is address conflict, which means two or
more memory area are overlapping. As mentioned above, the

44 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 11, NO. 1, MARCH 2014

mirror function in Memvisor’s current implementation is a
simple addition, mva = nva + offset. The offset is a constant
and needs to be set properly. There is a simple solution to
address this problem. That is, we use small applications and
choose offset carefully, which are useful in practice. But this
problem is not solved completely, because some applications
with large memory are prone to have address conflict. One
possible solution is to reorganize the layout of memory with
the backup space reserved in guest OSes, which breaks the
transparency of guest OSes. This solution works for open
source guest OSes such as Linux, but not for Windows.

C. Static and dynamic binary translation

In order to achieve process-level and application-level high
reliability, we can use static or dynamic binary translation to
inject mirror instructions. Compared with static translation,
dynamic binary translation often needs more system resources
including cache or runtime support components, which also
incur more overhead. Furthermore, if we extend it to kernel
mode mirror operations, it is difficult to deal with interrupt
exception. Meanwhile, static translation is handling code at the
compile time, so we can also deal with kernel mode code in
a similar way. However, it is also limited to self-modification
code. Fortunately, Linux is an open source OS and we use
GCC to insert mirror instructions during the compile time.

D. Multi-threaded environments

In a user mode multi-threaded environment, if the binary
translation module finds a lock-prefix instruction, to assure
the atomicity after the code is modified, an explicit mutex
lock should be added for each lock-prefix instruction and
its mirrored instruction, which incurs a large performance
overhead. If we extend Memvisor to support kernel model
memory mirroring, it needs to check the instruction after
an interrupt happens. Similar to function calls, if the next
instruction is a mirrored instruction, it should emulate this
instruction before executing the interrupt handler. That ensures
all the mirrored data is created immediately.

VI. RELATED WORK

High Availability plays an important role in computer
system’s architecture. Memory HA is also considered as a part
of the whole system HA. Google File System [11] and Dy-
namo [12] are the most famous application level HA systems.
They employ special algorithms to distribute data on two or
more physical machines, and can recover the data immediately
from the backup. Another typical model of system HA is
dual-machine VM replication [21]. A backup server is used
to get synchronized to the primary host. Nowadays, Xen,
VMware [22], and KVM have implemented their live migra-
tion to take over failures, with the optimization of memory
page pre-copy to reduce downtime. Furthermore, Remus [13]
uses synchronous replication and speculative execution based
on Xen to optimize the performance. In this solution, the state
of the primary VM is frequently recorded and transmitted to
the backup server during execution. Therefore, Linux kernel
compilation time was doubled, and SPEC-web benchmarks
suffer more slowdown when doing 40 checkpoints per second

using a 1 Gbit/s network connection for transmitting changes
in memory state. Kemari [23] aims to keep VMs transparently
running in times of hardware failures. VMWare has provided
another replication model based on replaying [22], but it
can be applied only to uniprocessor VMs and is highly
architecture-specific. Memvisor has better performance, which
brings only about 55% overhead with the most affected
memory-write-intensive workload. Moreover, without the lim-
itation incurred by checkpoints, Memvisor replicates the data
on the fly. Finally, Memvisor is a solution based on single
machine backup, so the network bandwidth is no longer a
problem.

Hardware redundancy: Besides the above software solu-
tions of high availability, hardware providers consider using
extra bits to check and correct memory errors. A typical
technology is Parity [5] which uses one extra bit to check
one byte data. Another solution is ECC [6], which uses
Hamming Codes [8] to detect and correct the internal data
corruption. Some machine providers promote ECC to support
their motherboard services (e.g., HP Advanced ECC [9],
Google ECC [24], and IBM Chipkill [25]). However, both
Parity and ECC can only retrieve limited bit errors rather than
massive block failures and more error check bits are needed
with the increment of native data bits.

In order to address single-bit and multi-bit errors, HP
mirrored channel [9] and Dell mirrored memory [26] on
PowerEdge 1850 provide full protection against single-bit and
multi-bit errors. The subsystem writes identical data to two
channels simultaneously. And it automatically retrieves the
data from the mirrored when errors happen. However, the high
cost and strict environment requirement become a problem
for providers. The providers may possibly pay a double or
triple cost to guarantee their memory availability. Meanwhile,
hardware solution also represents a poor flexibility in mission-
critical servers. If mission-critical clients and non mission-
critical ones coexist in one cluster environment, extra work
needs be done to schedule mission-critical clients only to such
hardware mirrored servers. With Memvisor, each VM only
needs a configuration of whether to support memory HA or
not. Compared to the hardware mirrored, Memvisor is a cost-
effective and flexible solution.

VII. CONCLUSION

Memvisor is a software solution achieving a multi-
granularity memory mirroring to enhance the process- and
application-level high availability. By duplicating the memory
write instructions, Memvisor replicates the whole memory,
and recovers the data when memory failures are detected. With
the help of virtualization technology, Memvisor could support
high available VMs and native VMs simultaneously. VMs can
easily choose to use process level or application level high
availability. Memvisor also can increase memory copies on
demand, which is more flexible than hardware approaches.
Moreover, Memvisor leverages the binary translation technol-
ogy to guarantee the data are replicated on the fly, which is a
large improvement over other software HA solutions.

The current Memvisor is implemented with static binary
translation and Direct Page Table technology. Compared with
current software HA systems, e.g., Remus configured with 40

QI et al.: MULTI-GRANULARITY MEMORY MIRRORING VIA BINARY TRANSLATION IN CLOUD ENVIRONMENTS 45

checkpoints per second incurs 103% overhead, our instruction
level rewriting avoids unnecessary data copy. The results show
that the performance of CPU-intensive tasks is unaffected, and
even in the worst case, our stressful memory write benchmark
shows the backup overhead of 80%. This paper also discusses
the method to implement Memvisor with dynamic binary
translation and shadow page tables, and we hope these features
can be done in the future. Moreover, our implementation is
limited on the user-mode applications, we will extend it to the
kernel-mode memory mirroring to implement a system-wide
availability. Moreover, the comparison between Direct Page
Table over Shadow Page Table will be conducted. Meanwhile,
we will implement our prototype on more operating systems,
such as embedded systems and mobile systems and evaluate
its usage and performance on these platforms. We will also
develop the user mode plug-in for applications to develop a
mirrored backup for critical data structures.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (No. 61272101), NRF Singapore CRE-
ATE Program E2S2, National Science and Technology Major
Project of China (No. 2013ZX03002004), and National Key
Project of Basic Science and Technology Research of China
(No.2013FY111900).

REFERENCES

[1] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:
a large-scale field study,” Commun. ACM, vol. 54, no. 2, pp. 100–107,
2011.

[2] Google, “App Engine Service Level Agreement,” https://developers.
google.com/appengine/sla.

[3] Amazon, “Amazon EC2 Service Level Agreement,” http://aws.amazon.
com/ec2-sla/.

[4] . Panzer-Steindel, “Data integrity,” CERN/IT, 2007.
[5] C. L. Chen, “Error-correcting codes for semiconductor memory appli-

cations: a state-of-the-art review,” IBM J. Research and Development,
1984.

[6] L. Levien and W. Meyers, “Special feature: semiconductor memory
reliability with error detecting and correcting codes,” 1976, pp. 43–50.

[7] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
pp. 21–28, 1962.

[8] R. W. Hamming, “Error detecting and error correcting codes,” Bell
System Technical J., 1950.

[9] HP Corporation, “HP advanced memory protection technologies,”
http://h18000.www1.hp.com/products/servers/technology/
memoryprotection.html.

[10] D. Fiala, K. B. Ferreira, F. Mueller, and C. Engelmann, “A tunable,
software-based dram error detection and correction library for hpc,” in
Proc. 2011 Euro-Par, vol. 7156, pp. 251–261, 2012.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in SOSP, 2003, pp. 29–43.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, and Werner Vogels, “Dynamo:
Amazon’s highly available key-value store,” in SOSP, 2007, pp. 205–
220.

[13] B. Cully, G. Lefebvre, D. T. Meyer, M. Feeley, N. C. Hutchinson, and
A. Warfield, “Remus: high availability via asynchronous virtual machine
replication (best paper),” in NSDI, 2008, pp. 161–175.

[14] H. Dong, W. Sun, B. Wang, H. Sun, and Z. Qi, “Memvisor: application
level memory mirroring via binary translation,” in CLUSTER (poster),
2012.

[15] D. Chisnall, The Definitive Guide to the Xen Hypervisor, 1st ed. Prentice
Hall, 2007.

[16] G. Wu, J. Gao, H. Zhang, and Y. Dong, “Improving PCM endurance with
randomized address remapping in hybrid memory system,” in CLUSTER
(poster), 2011, pp. 503–507.

[17] M. Gorman and P. Healy, “Supporting superpage allocation without
additional hardware support,” in ISMM, 2008, pp. 41–50.

[18] Sysbench, “Sysbench Doc,” http://sysbench.sourceforge.net/docs/.
[19] SQLite, “SQLite Web Site,” http://www.sqlite.org/.
[20] D. Vlasenko, “BusyBox: The Swiss Army Knife of Embedded Linux,”

http://www.busybox.net/.
[21] C. Clark, K. Fraser, S. H, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield, “Live migration of virtual machines,” in NSDI, 2005,
pp. 273–286.

[22] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design of a
practical system for fault-tolerant virtual machines,” Operating Systems
Rev., vol. 44, no. 4, pp. 30–39, 2010.

[23] Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: virtual machine
synchronization for fault tolerance,” in USENIX ATC, 2008.

[24] J. M. Deegan, “High reliability memory subsystem using data error cor-
recting code symbol sliced command repowering,” US Patent 7,206,962,
Google Patents.

[25] T. J. Dell, “Ecc-on-simm test challenges,” in ITC, 1994, pp. 511–515.
[26] Q. Li and U. Patel, “Enabling memory reliability, availability, and

serviceability features on Dell PowerEdge servers,” http://www.dell.
com/downloads/global/power/ps3q05-20050176-patel-oe.pdf.

Zhengwei Qi received his B.Eng. and M.Eng de-
grees from Northwestern Polytechnical University,
in 1999 and 2002, and Ph.D. degree from Shanghai
Jiao Tong University in 2005. He is an Associate
Professor at the School of Software, Shanghai Jiao
Tong University. His research interests include pro-
gram analysis, model checking, virtual machines,
and distributed systems.

Haoliang Dong received the B.E degree from
Shanghai Jiao Tong University in 2010. He is a
graduate student at Shanghai Key Laboratory of
Scalable Computing and Systems, School of Soft-
ware, Shanghai Jiao Tong University. His research
interests mainly include virtual machine, distributed
systems, and mobile computing.

Wei Sun received the B.E degree from Northwestern
Polytechnical University in 2010. He is a gradu-
ate student at Shanghai Key Laboratory of Scal-
able Computing and Systems, School of Software,
Shanghai Jiao Tong University. His research inter-
ests mainly include virtual machines, cloud systems,
and binary translation.

Yaozu Dong is currently a Ph.D. candidate at
Shanghai Jiao Tong University under the supervision
of Professor H.B. Guan. He is also a software
architect of Open Source Technology Center at Intel
Corporation, who works on Linux virtualization
including KVM and Xen. Yaozu Dong is an active
participant of both Industry and academia event, and
a frequent presenter of Xen, KVM and academia
conferences. Before that Yaozu worked in Linux
kernel debugger and other OS enabling work for
Xscale architecture in his 10+ years Intel working

experience.

Haibing Guan received the PhD degree in computer
science from the Tongji University, China. He is
currently a professor with the Faculty of Computer
Science, Shanghai Jiao Tong University, Shanghai,
China. He is a member of the IEEE and ACM. His
current research interests include, but are not limited
to, computer architecture, compiling, virtualization,
and hardware/software co-design.

