
Unikraft	–	The	“Unikernel	Core”	
	
The high level goal of Unikraft is to be able to build unikernels 
targeted at specific applications without requiring the time-
consuming, expert work that building such a unikernel requires 
today. The main idea behind Unikraft is depicted in Figure 1 and 
consists of two basic components: 
 

Library pools would contain libraries that the user of Unikraft 
can select from to create the unikernel. From the bottom up, 
library pools are organized into (1) the architecture library 
tool, containing libraries specific to a computer architecture 
(e.g., x86_64, ARM32 or MIPS); (2) the platform tool, where 
target platforms can be Xen, KVM, bare metal (i.e. no 
virtualization) and user-space Linux; and (3) the main library 
pool, containing a rich set of functionality to build the 
unikernel from. This last library includes drivers (both 
virtual such as netback/netfront and physical such as ixgbe), 
filesystems, memory allocators, schedulers, network stacks, 
standard libs (e.g. libc, openssl, etc.), runtimes (e.g. a 
Python interpreter and debugging and profiling tools. These 
pools of libraries constitute a code base for creating 
unikernels. As shown, a library can be relatively large (e.g 
libc) or quite small (a scheduler), which should allow for a 
fair amount of customization for the unikernel. 
 
The Unikraft build tool is in charge of compiling the 
application and the selected libraries together to create a 
binary for a specific platform and architecture (e.g., Xen on 
x86_64). The tool is currently inspired by Linux’s kconfig 
system and consists of a set of Makefiles. It allows users to 
select libraries, to configure them, and to warn them when 
library dependencies are not met. In addition, the tool can 
also simultaneously generate binaries for multiple platforms. 

 
As an example, a user wanting to create a network driver domain 
would start the tool (“make menuconfig”) and (steps 1 in Figure 
1). Using the menu-based system, the user chooses the relevant 
libraries; for a Xen driver domain this would include a physical 
network driver, the netback driver, the libxenplat library and a 
library from the architecture library pool such as libx86_64arch 
(Step 2 in the figure). With this in place, the user saves the 
configuration and types “make” to build the unikernel (Step 3) 
and xl create to run it (Step 4). In the case of an application-
based unikernel (e.g., lighthttpd) the process is the same, 
except the user runs “make menuconfig” from the application 
directory; the Makefile there would set a variable to indicate 
what the application is, and would include the main Unikraft 
Makefiles so that the unikernel can be built. 



 
An additional goal (or hope) of Unikraft is that all developers 
interested in unikernel development would contribute by supplying 
libraries rather than working on independent projects with 
different code bases as it is done today. 
 
A note on the ABI/API: because Unikraft allows for customization 
of the unikernels, the ABI (or API since there is no kernel) 
would be custom, that is, defined by the libraries the user 
selected. Having said that, it would be perfectly possible, for 
instance, to build POSIX-compliant unikernels with it. 
	

	
Figure	1.	Unikraft	architecture.	

	
	


