
squeezed: a host memory ballooning daemon Document Revision 0.1

squeezed: a host memory ballooning
daemon

Version: Document Revision 0.1
Date: 9th November 2009
Comments are welcome!

David Scott: dave.scott@eu.citrix.com

Copyright c© 2009 Citrix, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy
of the license is included in the section entitled ”GNU Free Documentation License”.

2 ENVIRONMENTAL ASSUMPTIONS

1 Introduction

We wish to:

1. allow VM memory to be adjusted dynamically without having to reboot; and

2. “squeeze” a few more VMs onto a host to cover the interval between another host failing
and more capacity being brought online.

squeezed is a per-host memory ballooning daemon. It performs two tasks:

1. it exports a simple host memory management interface to the XAPI toolstack through which
XAPI can reserve memory for new domains;

2. it applies a ballooning policy to all domains running on a host.

The daemon currently includes a simple ballooning policy (see Section 4) and the intention is that
this can be replaced later with more sophisticated policies (e.g. xenballoond1)). Although the only
client is the XAPI toolstack, the interface can in theory be used by other clients.

In the short-term this document will allow the assumptions and the design to be reviewed. In
the longer term this document will become part of the XAPI toolstack software design notes.

The rest of this document is structured as follows. Section 2 lists assumptions made by the
ballooning daemon on other parts of the system; these assumptions need careful review and may
not be valid. Section 3 describes the interface between the toolstack and the ballooning daemon.
Section 4 describes the simple built-in ballooning policy and Section 5 describes how squeezed
models memory. The main loop of the daemon is described in Section 6 and a detailed example is
described in Section 7. Section 8 describes the structure of the daemon itself and finally Section 9
lists some known issues.

2 Environmental assumptions

1. The squeezed daemon runs within a Xen domain 0 and communicates to xenstored via a
Unix domain socket. Therefore squeezed is granted full access to xenstore, enabling it to
modify every domain’s memory/target.

2. The squeezed daemon calls setmaxmem in order to cap the amount of memory a domain
can use. This relies on a patch to xen2 which allows maxmem to be set lower than totpages.
See Section 6.2 for more information.

3. The squeezed daemon assumes that only domains which write control/feature-balloon

into xenstore can respond to ballooning requests. It will not ask any other domains to
balloon.

4. The squeezed daemon assumes that the memory used by a domain is: (i) that listed in
domain getinfo as totpages; (ii) shadow as given by shadow allocation get; and (iii) a
small (few KiB) of miscellaneous Xen structures (e.g. for domains, vcpus) which are invisible.

5. The squeezed daemon assumes that a domain which is created with a particular memory/target
(and startmem, to within rounding error) will reach a stable value of totpages before writ-
ing control/feature-balloon.3The daemon writes this value to memory/memory-offset

for future reference.

1http://wiki.xensource.com/xenwiki/Open_Topics_For_Discussion?action=AttachFile&do=get&target=

Memory+Overcommit.pdf
2http://xenbits.xen.org/xapi/xen-3.4.pq.hg?file/c01d38e7092a/max-pages-below-tot-pages
3The control/feature-balloon key is probably the wrong signal.

2

3 TOOLSTACK INTERFACE

• The squeezed daemon does not know or care exactly what causes the difference be-
tween totpages and memory/target and it does not expect it to remain constant across
Xen releases. It only expects the value to remain constant over the lifetime of a domain.

6. The squeezed daemon assumes that the balloon driver has hit its target when difference
between memory/target and totpages equals the memory-offset value.

• Corrollary: to make a domain with a responsive balloon driver currenty using totpages

allocate or free x, it suffices to set memory/target to x + totpages + memory-offset

and wait for the balloon driver to finish. See Section 5 for more detail.

7. The squeezed daemon must maintain a “slush fund” of memory (currently 9MiB) which it
must prevent any domain from allocating. Since (i) some Xen operations (such as domain
creation) require memory within a physical address range (e.g. < 4GiB) and (ii) since Xen
preferentially allocates memory outside these ranges, it follows that by preventing guests
from allocating all host memory (even transiently) we guarantee that memory from within
these special ranges is always available. See Section 6.1 for more details.

8. The squeezed daemon assumes that it may set memory/target to any value within range:
memory/dynamic-max to memory/dynamic-min

9. The squeezed daemon assumes that the probability of a domain booting successfully may
be increased by setting memory/target closer to memory/static-max.

10. The squeezed daemon assumes that, if a balloon driver has not made any visible progress
after 5 seconds, it is effectively inactive. Active domains will be expected to pick up the
slack.

3 Toolstack interface

This section begins by describing the concept of a reservation and then describes the toolstack
interface in pseudocode.

A reservation is: an amount of host free memory tagged with an associated reservation id. Note
this is an internal squeezed concept and Xen is completely unaware of it. When the daemon is
moving memory between domains, it always aims to keep

host free memory >= s +
∑
i

reservationi

where s is the size of the “slush fund” (currently 9MiB) and reservationi is the amount corre-
sponding to the ith reservation.

As an aside: Earlier versions of squeezed always associated memory with a Xen domain.
Unfortunately this required domains to be created before memory was freed which was problematic
because domain creation requires small amounts of contiguous frames. Rather than implement
some form of memory defragmentation, squeezed and XAPI were modified to free memory before
creating a domain. This necessitated making memory reservations first-class stand-alone entities.

Once a reservation is made (and the corresponding memory is freed), it can be transferred to
a domain created by a toolstack. This associates the reservation with that domain so that, if the
domain is destroyed, the reservation is also freed. Note that squeezed is careful not to count
both a domain’s reservation and its totpages during e.g. domain building: instead it considers
the domain’s allocation to be the maximum of reservation and totpages.

The size of a reservation may either be specified exactly by the caller or the caller may provide
a memory range. If a range is provided the daemon will allocate at least as much as the minimum
value provided and as much as possible up to the maximum. By allocating as much memory as
possible to the domain, the probability of a successful boot is increased.

3

4 BALLOONING POLICY

Clients of the squeezed provide a string name when they log in. All untransferred reservations
made by a client are automatically deleted when a client logs in. This prevents memory leaks where
a client crashes and loses track of its own reservation ids.

The interface looks like this:

string session_id login(string client_name)

string reservation_id reserve_memory(string client_name, int kib)

int amount, string reservation_id reserve_memory_range(string client_name, int min, int max)

void delete_reservation(string client_name, string reservation_id)

void transfer_reservation_to_domain(string client_name, string reservation_id, int domid)

The XAPI toolstack has code like the following: (in http://www.xen.org/files/XenCloud/

ocamldoc/index.html?c=xapi&m=Vmops)

r_id = reserve_memory_range("xapi", min, max);

try:

d = domain_create()

transfer_reservation_to_domain("xapi", r_id, d)

with:

delete_reservation("xapi", r_id)

The interface is currently implemented using a trivial RPC protocol over xenstore where re-
quests and responses are directories and their parameters and return values are keys in those
directories.

4 Ballooning policy

This section describes the very simple default policy currently built-into squeezed.
Every domain has a pair of values written into xenstore: memory/dynamic-min and memory/dynamic-max

with the following meanings:

memory/dynamic-min : the lowest value that squeezed is allowed to set memory/target. The
administrator should make this as low as possible but high enough to ensure that the appli-
cations inside the domain actually work.

memory/dynamic-max : the highest value that squeezed is allowed to set memory/target. This
can be used to dynamically cap the amount of memory a domain can use.

If all balloon drivers are responsive then squeezed daemon allocates memory proportionally, so
that each domain has the same value of:

memory/target− memory/dynamic-min

memory/dynamic-max− memory/dynamic-min

So:

• if memory is plentiful then all domains will have memory/target = memory/dynamic-max

• if memory is scarce then all domains will have memory/target = memory/dynamic-min

Note that the values of memory/target suggested by the policy are ideal values. In many real-
life situations (e.g. when a balloon driver fails to make progress and is declared inactive) the
memory/target values will be different.

Note that, by default, domain 0 has dynamic min = dynamic max, effectively disabling bal-
looning. Clearly a more sophisticated policy would be required here since ballooning down domain
0 as extra domains are started would be. . . problematic.

4

5 THE MEMORY MODEL USED BY SQUEEZED

5 The memory model used by squeezed

This section describes the model used internally by squeezed.
The squeezed daemon considers a ballooning-aware domain (i.e. one which has written the

feature-balloon flag into xenstore) to be a 6-tuple:

ballooning domain = (dynamic-min, dynamic-max, target, totpages, memory-offset, maxmem)

where

dynamic-min : policy value written to memory/dynamic-min in xenstore by a toolstack (see Sec-
tion 4)

dynamic-max : policy value written to memory/dynamic-max in xenstore by a toolstack (see Sec-
tion 4)

target : balloon driver target written to memory/target in xenstore by squeezed

totpages : instantaneous number of pages used by the domain as returned by domain getinfo

memory-offset : constant difference between target and totpages when the balloon driver
believes no ballooning is necessary:

memory-offset
def
= totpages− target when idle

maxmem : upper limit on totpages:
totpages <= maxmem

For convenience we define a totpages’ to be the target value necessary to cause a domain currently
using totpages to maintain this value indefinitely.

totpages’
def
= totpages− memory-offset

The squeezed daemon believes that:

• a domain should be ballooning iff totpages’ <> target (unless it has become inactive);

• a domain has hit its target iff totpages’ = target (to within 1 page);

• if a domain has target ← x then, when ballooning is complete, it will have totpages =
memory-offset + x; and therefore

• to cause a domain to free y it sufficies to set target← totpages− memory-offset− y.

The squeezed daemon considers non-ballooning aware domains (i.e. those which have not
written feature-balloon) to be represented by pairs of:

other domain = (totpages, reservation)

where

totpages : instantaneous number of pages used by the domain as returned by domain getinfo

reservation : memory initially freed for this domain by squeezed after a transfer reservation to domid

call

5

6 THE MAIN LOOP

Note that non-ballooning aware domains will always have startmem = target since the domain
will not be instructed to balloon. Since a domain which is being built will have 0 <= totpages <=
reservation, squeezed computes:

unused(i)
def
= i.reservation − i.totpages

and subtracts this from its model of the host’s free memory, ensuring that it doesn’t accidentally
reallocate this memory for some other purpose.

The squeezed daemon believes that:

• all guest domains start out as non-ballooning aware domains where target = reservation =
startmem;

• some guest domains become ballooning-aware during their boot sequence i.e. when they
write feature-balloon

The squeezed daemon considers a host to be a 5-tuple:

host = (ballooning domains, other domains, s, physinfo.free pages, reservationi)

where

ballooning domains : a list of ballooning domain values representing domains which squeezed
will instruct to balloon;

other domains : a list of other domain values which includes both domains which are still booting
and will transform into ballooning domains and those which have no balloon drivers.

s : a “slush fund” of low memory required for Xen;

physinfo.free pages : total amount of memory instantanously free (including both free pages

and scrub pages)

reservationi : a set of memory reservations not allocated to any domain

The squeezed daemon considers memory to be unused (i.e. not allocated for any useful purpose)
as follows:

unused memory = physinfo.free pages− Σireservationi − s− Σi∈other domainsunused(i)

6 The main loop

The main loop 4 is triggered by either:

1. the arrival of an allocation request on the toolstack interface; or

2. the policy engine – polled every 10s – deciding that a target adjustment is needed.

Each iteration of the main loop5 generates the following actions:

1. Domains which were active but have failed to make progress towards their target in 5s are
declared inactive. These domains then have:

maxmem← min(target, totpages)

4change host free memory in http://xenbits.xen.org/xapi/xen-api.hg?file/3e8c0167940d/ocaml/xenops/

squeeze.ml
5one iteration in http://xenbits.xen.org/xapi/xen-api.hg?file/3e8c0167940d/ocaml/xenops/squeeze.ml

6

6.1 Two-phase target setting 6 THE MAIN LOOP

2. Domains which were inactive but have started to make progress towards their target are
declared active. These domains then have:

maxmem← target

3. Domains which are currently active have new targets computed according to the policy (see
Section 4). Note that inactive domains are ignored and not expected to balloon.

Note that domains remain classified as inactive only during one run of the main loop. Once the
loop has terminated all domains are optimistically assumed to be active again. Therefore should
a domain be classified as inactive once, it will get many later chances to respond.

See Section 6.1 for more detail on how targets are updated and Section 6.2 for more detail
about maxmem.

The main loop has a notion of a host free memory “target”, similar to the existing domain
memory target. When we are trying to free memory (e.g. for starting a new VM), the host free
memory “target” is increased. When we are trying to distribute memory among guests (e.g. after
a domain has shutdown and freed lots of memory), the host free memory “target” is low. Note the
host free memory “target” is always at least several MiB to ensure that some host free memory
with physical address < 4GiB is free (see Section 6.1 for related information).

The main loop terminates when all active domains have reached their targets (this could be
because all domains responded or because they all wedged and became inactive); and the policy
function hasn’t suggested any new target changes. There are three possible results:

1. Success if the host free memory is near enough its “target”;

2. Failure if the operation is simply impossible within the policy limits (i.e. dynamic min values
are too high;

3. Failure if the operation failed because one or more domains became inactive and this pre-
vented us from reaching our host free memory “target”.

Note that, since only active domains have their targets set, the system effectively rewards domains
which refuse to free memory (inactive) and punishes those which do free memory (active). This
effect is countered by signalling to the admin which domains/VMs aren’t responding so they can
take corrective action. To achieve this, the daemon monitors the list of inactive domains and if a
domain is inactive for more than 20s it writes a flag into xenstore memory/uncooperative. This
key is seen by the XAPI toolstack which currently generates an alert to inform the admin.

6.1 Two-phase target setting

Consider the scenario shown graphically in Figure 1. In the initial state (at the top of the diagram),
there are two domains, one which has been requested to use more memory and the other requested
to use less memory. In effect the memory is to be transferred from one domain to the other. In
the final state (at the bottom of the diagram), both domains have reached their respective targets,
the memory has been transferred and the host free memory is at the same value it was initially.
However the system will not move atomically from the initial state to the final: there are a
number of possible transient in-between states, two of which have been drawn in the middle of
the diagram. In the left-most transient state the domain which was asked to free memory has
freed all the memory requested: this is reflected in the large amount of host memory free. In the
right-most transient state the domain which was asked to allocate memory has allocated all the
memory requested: now the host’s free memory has hit zero.

If the host’s free memory hits zero then Xen has been forced to give all memory to guests,
including memory < 4GiB which is critical for allocating certain structures. Even if we ask a
domain to free memory via the balloon driver there is no guarantee that it will free the useful
memory. This leads to an annoying failure mode where operations such as creating a domain free
due to ENOMEM despite the fact that there is apparently lots of memory free.

7

6.1 Two-phase target setting 6 THE MAIN LOOP

domain 1 domain 2 host

m
e
m
o
r
y

domain 1 domain 2 host

m
e
m
o
r
y

domain 1 domain 2 host

m
e
m
o
r
y

domain 1 domain 2 host

m
e
m
o
r
y

host free memorhost free memory

has run outhas run out

Figure 1: The diagram shows how a system with two domains can evolve if domain memory/target

values are increased for some domains and decreased for others, at the same time. Each graph
shows two domains (domain 1 and domain 2) and a host. For a domain, the square box shows
its totpages’ and the arrow indicates the direction of the memory/target. For the host the
square box indicates total free memory. Note the highlighted state where the host’s free memory
is temporarily exhausted.

8

6.2 Use of maxmem 7 EXAMPLE OPERATION

The solution to this problem is to adopt a two-phase memory/target setting policy. The
squeezed daemon forces domains to free memory first before allowing domains to allocate, in-
effect forcing the system to move through the left-most state in the diagram above.

6.2 Use of maxmem

The Xen domain maxmem value is used to limit memory allocations by the domain. The rules are:

1. if the domain has never been run and is paused then maxmem← reservation (for information
about reservations see Section 3);

• these domains are probably still being built and we must let them allocate their
startmem

• FIXME: this “never been run’ concept pre-dates the feature-balloon flag: perhaps
we should use the feature-balloon flag instead.

2. if the domain is running and the balloon driver is thought to be working then maxmem ←
target; and

• there may be a delay between lowering a target and the domain noticing so we prevent
the domain from allocating memory when it should in fact be deallocating.

3. if the domain is running and the balloon driver is thought to be inactive then maxmem ←
min(target, actual).

• if the domain is using more memory than it should then we allow it to make progress
down towards its target; however

• if the domain is using less memory than it should then we must prevent it from suddenly
waking up and allocating more since we have probably just given it to someone else

• FIXME: should we reduce the target to leave the domain in a neutral state instead of
asking it to allocate and fail forever?

7 Example operation

The scenario in Figure 2 includes 3 domains (domain 1, domain 2, domain 3) on a host. Each of
the domains has a non-ideal totpages’ value.

Recall we also have the policy constraint that:

dynamic-min <= target <= dynamic-max

Hypothetically if we reduce target by target−dynamic-min (i.e. by setting target← dynamic-min)
then we should reduce totpages by the same amount, freeing this much memory on the host. In
the upper-most graph in Figure 2 the total amount of memory which would be freed if we set each
of the 3 domain’s target← dynamic-min is:

d1 + d2 + d3

In this hypothetical situation we would now have x+ s+ d1 + d2 + d3 free on the host where s is
the host slush fund and x is completely unallocated. Since we always want to keep the host free
memory above s, we are free to return x + d1 + d2 + d3 to guests. If we use the default built-in
proportional policy then, since all domains have the same dynamic-min and dynamic-max, each
gets the same fraction of this free memory which we call g:

g
def
=

x + d1 + d2 + d3

3

For each domain, the ideal balloon target is now target = dynamic-min + g. The squeezed
daemon sets these targets in two phases, as described in Section 6.1

9

7 EXAMPLE OPERATION

domain 1 domain 2 hostdomain 3

s
x

d1 d2 d3

dynamic max

dynamic min

s = host "slush fund"
x = unallocated memory
d1 = neutral target − dynamic min
d2 = neutral target − dynamic min
d3 = neutral target − dynamic min
g = amount "given back" to
 each guest (depends on
 policy)

domain 1 domain 2 hostdomain 3

s

g

dynamic max

dynamic min

g g

domain 1 domain 2 hostdomain 3

s

g

dynamic max

dynamic min

g g

compute ideal target values
based on policy

post−execution state

Figure 2: The diagram shows an initial system state comprising 3 domains on a single host. The
state is not ideal; the domains each have the same policy settings (dynamic-min and dynamic-max)
and yet are using differing values of totpages’. In addition the host has more memory free than
desired. The second diagram shows the result of computing ideal target values and the third
diagram shows the result after targets have been set and the balloon drivers have responded.

10

9 ISSUES

8 The structure of the daemon

The squeezed daemon is a single-threaded daemon which is started by an init.d script. It sits
waiting for incoming requests on its toolstack interface and checks every 10s whether all domain
targets are set to the ideal values (see Section 4). If an allocation request arrives or if the domain
targets require adjusting then it calls into the module ocaml/xenops/squeeze_xen.ml6.

The module ocaml/xenops/squeeze_xen.ml contains code which inspects the state of the
host (through hypercalls and reading xenstore) and creates a set of records describing the current
state of the host and all the domains. Note this snapshot of state is not atomic – it is pieced
together from multiple hypercalls and xenstore reads – we assume that the errors generated are
small and we ignore them. These records are passed into the ocaml/xenops/squeeze.ml7 module
where they are processed and converted into a list of actions i.e. (i) updates to memory/target

and; (ii) declarations that particular domains have become inactive or active. The rationale for
separating the Xen interface from the main ballooning logic was to make testing easier: the module
ocaml/xenops/squeeze_test.ml8 contains a simple simulator which allows various edge-cases to
be checked.

9 Issues

• If a linux domU kernel has the netback, blkback or blktap modules then they away pages
via alloc empty pages and pagevec() during boot. This interacts with the balloon driver
to break the assumption that, reducing the target by x from a neutral value should free x
amount of memory.

• Polling the state of the host (particular the xenstore contents) is a bit inefficient. Perhaps
we should move the policy values dynamic min and dynamic max to a separate place in the
xenstore tree and use watches instead.

• The memory values given to the domain builder are in units of MiB. We may wish to similarly
quantise the target value or check that the memory-offset calculation still works.

• The Xen patch queue reintroduces the lowmem emergency pool9. This was an attempt to
prevent guests from allocating lowmem before we switched to a two-phase target setting
procedure. This patch can probably be removed.

• It seems unnecessarily evil to modify an inactive domain’s maxmem leaving maxmem < target,
causing the guest to attempt allocations forwever. It’s probably neater to move the target

at the same time.

• Declaring a domain active just because it makes small amounts of progress shouldn’t be
enough. Otherwise a domain could free 1 byte (or maybe 1 page) every 5s.

• Likewise, declaring a domain “uncooperative” only if it has been inactive for 20s means that
a domain could alternate between inactive for 19s and active for 1s and not be declared
“uncooperative”.

6http://www.xen.org/files/XenCloud/ocamldoc/index.html?c=xenops&m=Squeeze_xen
7http://www.xen.org/files/XenCloud/ocamldoc/index.html?c=xenops&m=Squeeze
8http://www.xen.org/files/XenCloud/ocamldoc/index.html?c=xenops&m=Squeeze_test
9http://xenbits.xen.org/xapi/xen-3.4.pq.hg?file/c01d38e7092a/lowmem-emergency-pool

11

9 ISSUES

GNU Free Documentation License

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document ”free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be
used for any textual work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License. Such
a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The ”Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as ”you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document or a por-
tion of it, either copied verbatim, or with modifications and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the Docu-
ment’s overall subject (or to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical con-
nection with the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for

12

9 ISSUES

input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, ”Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as ”Acknowl-
edgements”, ”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve the Title”
of such a section when you modify the Document means that it remains a section ”Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

13

9 ISSUES

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this Li-
cense, with the Modified Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled ”History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the ”History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

14

9 ISSUES

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties–for example, statements of peer review or that
the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the various original
documents, forming one section Entitled ”History”; likewise combine any sections Entitled ”Ac-
knowledgements”, and any sections Entitled ”Dedications”. You must delete all sections Entitled
”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

15

9 ISSUES

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an ”aggregate”
if the copyright resulting from the compilation is not used to limit the legal rights of the compi-
lation’s users beyond what the individual works permit. When the Document is included in an
aggregate, this License does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License ”or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

16

9 ISSUES

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled ”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the ”with...Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

17

